Set the Python file maximum line length to 88 characters (#2122)

* flake8 --max-line-length=88

* fixup! Format Python code with psf/black push

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss
2020-06-16 10:09:19 +02:00
committed by GitHub
parent 9438c6bf0b
commit 9316e7c014
90 changed files with 473 additions and 320 deletions

View File

@ -4,7 +4,8 @@ def bailey_borwein_plouffe(digit_position: int, precision: int = 1000) -> str:
Bailey-Borwein-Plouffe (BBP) formula to calculate the nth hex digit of pi.
Wikipedia page:
https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula
@param digit_position: a positive integer representing the position of the digit to extract.
@param digit_position: a positive integer representing the position of the digit to
extract.
The digit immediately after the decimal point is located at position 1.
@param precision: number of terms in the second summation to calculate.
A higher number reduces the chance of an error but increases the runtime.
@ -41,7 +42,8 @@ def bailey_borwein_plouffe(digit_position: int, precision: int = 1000) -> str:
elif (not isinstance(precision, int)) or (precision < 0):
raise ValueError("Precision must be a nonnegative integer")
# compute an approximation of (16 ** (n - 1)) * pi whose fractional part is mostly accurate
# compute an approximation of (16 ** (n - 1)) * pi whose fractional part is mostly
# accurate
sum_result = (
4 * _subsum(digit_position, 1, precision)
- 2 * _subsum(digit_position, 4, precision)
@ -70,8 +72,9 @@ def _subsum(
denominator = 8 * sum_index + denominator_addend
exponential_term = 0.0
if sum_index < digit_pos_to_extract:
# if the exponential term is an integer and we mod it by the denominator before
# dividing, only the integer part of the sum will change; the fractional part will not
# if the exponential term is an integer and we mod it by the denominator
# before dividing, only the integer part of the sum will change;
# the fractional part will not
exponential_term = pow(
16, digit_pos_to_extract - 1 - sum_index, denominator
)

View File

@ -6,7 +6,8 @@ def ceil(x) -> int:
:return: the smallest integer >= x.
>>> import math
>>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
>>> all(ceil(n) == math.ceil(n) for n
... in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True
"""
return (

View File

@ -1,5 +1,6 @@
# Python program to show the usage of Fermat's little theorem in a division
# According to Fermat's little theorem, (a / b) mod p always equals a * (b ^ (p - 2)) mod p
# According to Fermat's little theorem, (a / b) mod p always equals
# a * (b ^ (p - 2)) mod p
# Here we assume that p is a prime number, b divides a, and p doesn't divide b
# Wikipedia reference: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

View File

@ -4,7 +4,8 @@
2. Calculates the fibonacci sequence with a formula
an = [ Phin - (phi)n ]/Sqrt[5]
reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts. <http://www.math.hmc.edu/funfacts>
reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts.
<http://www.math.hmc.edu/funfacts>
"""
import math
import functools
@ -71,11 +72,13 @@ def _check_number_input(n, min_thresh, max_thresh=None):
print("Incorrect Input: number must not be less than 0")
except ValueTooSmallError:
print(
f"Incorrect Input: input number must be > {min_thresh} for the recursive calculation"
f"Incorrect Input: input number must be > {min_thresh} for the recursive "
"calculation"
)
except ValueTooLargeError:
print(
f"Incorrect Input: input number must be < {max_thresh} for the recursive calculation"
f"Incorrect Input: input number must be < {max_thresh} for the recursive "
"calculation"
)
return False

View File

@ -6,7 +6,8 @@ def floor(x) -> int:
:return: the largest integer <= x.
>>> import math
>>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
>>> all(floor(n) == math.floor(n) for n
... in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True
"""
return (

View File

@ -8,7 +8,8 @@ def gamma(num: float) -> float:
https://en.wikipedia.org/wiki/Gamma_function
In mathematics, the gamma function is one commonly
used extension of the factorial function to complex numbers.
The gamma function is defined for all complex numbers except the non-positive integers
The gamma function is defined for all complex numbers except the non-positive
integers
>>> gamma(-1)

View File

@ -25,9 +25,9 @@ def greatest_common_divisor(a, b):
"""
Below method is more memory efficient because it does not use the stack (chunk of memory).
While above method is good, uses more memory for huge numbers because of the recursive calls
required to calculate the greatest common divisor.
Below method is more memory efficient because it does not use the stack (chunk of
memory). While above method is good, uses more memory for huge numbers because of the
recursive calls required to calculate the greatest common divisor.
"""
@ -50,7 +50,8 @@ def main():
num_1 = int(nums[0])
num_2 = int(nums[1])
print(
f"greatest_common_divisor({num_1}, {num_2}) = {greatest_common_divisor(num_1, num_2)}"
f"greatest_common_divisor({num_1}, {num_2}) = "
f"{greatest_common_divisor(num_1, num_2)}"
)
print(f"By iterative gcd({num_1}, {num_2}) = {gcd_by_iterative(num_1, num_2)}")
except (IndexError, UnboundLocalError, ValueError):

View File

@ -1,6 +1,6 @@
"""
In mathematics, the LucasLehmer test (LLT) is a primality test for Mersenne numbers.
https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
In mathematics, the LucasLehmer test (LLT) is a primality test for Mersenne
numbers. https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
A Mersenne number is a number that is one less than a power of two.
That is M_p = 2^p - 1

View File

@ -15,7 +15,7 @@ class Matrix:
if isinstance(arg, list): # Initializes a matrix identical to the one provided.
self.t = arg
self.n = len(arg)
else: # Initializes a square matrix of the given size and set the values to zero.
else: # Initializes a square matrix of the given size and set values to zero.
self.n = arg
self.t = [[0 for _ in range(self.n)] for _ in range(self.n)]

View File

@ -1,7 +1,8 @@
"""
Modular Exponential.
Modular exponentiation is a type of exponentiation performed over a modulus.
For more explanation, please check https://en.wikipedia.org/wiki/Modular_exponentiation
For more explanation, please check
https://en.wikipedia.org/wiki/Modular_exponentiation
"""
"""Calculate Modular Exponential."""

View File

@ -44,7 +44,8 @@ if __name__ == "__main__":
Example:
>>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2
>>> x = -13.0
>>> print(evaluate_poly(poly, x)) # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9
>>> # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9
>>> print(evaluate_poly(poly, x))
180339.9
"""
poly = (0.0, 0.0, 5.0, 9.3, 7.0)

View File

@ -1,7 +1,8 @@
"""
This script demonstrates the implementation of the ReLU function.
It's a kind of activation function defined as the positive part of its argument in the context of neural network.
It's a kind of activation function defined as the positive part of its argument in the
context of neural network.
The function takes a vector of K real numbers as input and then argmax(x, 0).
After through ReLU, the element of the vector always 0 or real number.

View File

@ -1,8 +1,10 @@
"""
Sieve of Eratosthones
The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or
equal to a given value.
Illustration:
https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
Reference: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
doctest provider: Bruno Simas Hadlich (https://github.com/brunohadlich)

View File

@ -25,7 +25,8 @@ def square_root_iterative(
Square root is aproximated using Newtons method.
https://en.wikipedia.org/wiki/Newton%27s_method
>>> all(abs(square_root_iterative(i)-math.sqrt(i)) <= .00000000000001 for i in range(0, 500))
>>> all(abs(square_root_iterative(i)-math.sqrt(i)) <= .00000000000001
... for i in range(500))
True
>>> square_root_iterative(-1)