Set the Python file maximum line length to 88 characters (#2122)

* flake8 --max-line-length=88

* fixup! Format Python code with psf/black push

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss
2020-06-16 10:09:19 +02:00
committed by GitHub
parent 9438c6bf0b
commit 9316e7c014
90 changed files with 473 additions and 320 deletions

View File

@ -11,15 +11,16 @@ def lamberts_ellipsoidal_distance(
two points on the surface of earth given longitudes and latitudes
https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
NOTE: This algorithm uses geodesy/haversine_distance.py to compute central angle, sigma
NOTE: This algorithm uses geodesy/haversine_distance.py to compute central angle,
sigma
Representing the earth as an ellipsoid allows us to approximate distances between points
on the surface much better than a sphere. Ellipsoidal formulas treat the Earth as an
oblate ellipsoid which means accounting for the flattening that happens at the North
and South poles. Lambert's formulae provide accuracy on the order of 10 meteres over
thousands of kilometeres. Other methods can provide millimeter-level accuracy but this
is a simpler method to calculate long range distances without increasing computational
intensity.
Representing the earth as an ellipsoid allows us to approximate distances between
points on the surface much better than a sphere. Ellipsoidal formulas treat the
Earth as an oblate ellipsoid which means accounting for the flattening that happens
at the North and South poles. Lambert's formulae provide accuracy on the order of
10 meteres over thousands of kilometeres. Other methods can provide
millimeter-level accuracy but this is a simpler method to calculate long range
distances without increasing computational intensity.
Args:
lat1, lon1: latitude and longitude of coordinate 1
@ -50,7 +51,8 @@ def lamberts_ellipsoidal_distance(
# Equation Parameters
# https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
flattening = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
b_lat1 = atan((1 - flattening) * tan(radians(lat1)))
b_lat2 = atan((1 - flattening) * tan(radians(lat2)))