Set the Python file maximum line length to 88 characters (#2122)

* flake8 --max-line-length=88

* fixup! Format Python code with psf/black push

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss
2020-06-16 10:09:19 +02:00
committed by GitHub
parent 9438c6bf0b
commit 9316e7c014
90 changed files with 473 additions and 320 deletions

View File

@ -1,5 +1,6 @@
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation
# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c.
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
# diophantine equation a*x + b*y = c has a solution (where x and y are integers)
# iff gcd(a,b) divides c.
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
@ -29,8 +30,9 @@ def diophantine(a, b, c):
# Finding All solutions of Diophantine Equations:
# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c.
# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer.
# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine
# Equation a*x + b*y = c. a*x0 + b*y0 = c, then all the solutions have the form
# a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer.
# n is the number of solution you want, n = 2 by default
@ -75,8 +77,9 @@ def greatest_common_divisor(a, b):
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
Note : In number theory, two integers a and b are said to be relatively prime,
mutually prime, or co-prime if the only positive integer (factor) that
divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
@ -91,7 +94,8 @@ def greatest_common_divisor(a, b):
return b
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers
# x and y, then d = gcd(a,b)
def extended_gcd(a, b):