[pre-commit.ci] pre-commit autoupdate (#9543)

* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.0.291 → v0.0.292](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.291...v0.0.292)
- [github.com/codespell-project/codespell: v2.2.5 → v2.2.6](https://github.com/codespell-project/codespell/compare/v2.2.5...v2.2.6)
- [github.com/tox-dev/pyproject-fmt: 1.1.0 → 1.2.0](https://github.com/tox-dev/pyproject-fmt/compare/1.1.0...1.2.0)

* updating DIRECTORY.md

* Fix typos in test_min_spanning_tree_prim.py

* Fix typos

* codespell --ignore-words-list=manuel

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
pre-commit-ci[bot]
2023-10-07 21:32:28 +02:00
committed by GitHub
parent 60291738d2
commit 895dffb412
19 changed files with 98 additions and 119 deletions

View File

@ -11,18 +11,18 @@ There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73
How many circular primes are there below one million?
To solve this problem in an efficient manner, we will first mark all the primes
below 1 million using the Seive of Eratosthenes. Then, out of all these primes,
we will rule out the numbers which contain an even digit. After this we will
below 1 million using the Sieve of Eratosthenes. Then, out of all these primes,
we will rule out the numbers which contain an even digit. After this we will
generate each circular combination of the number and check if all are prime.
"""
from __future__ import annotations
seive = [True] * 1000001
sieve = [True] * 1000001
i = 2
while i * i <= 1000000:
if seive[i]:
if sieve[i]:
for j in range(i * i, 1000001, i):
seive[j] = False
sieve[j] = False
i += 1
@ -36,7 +36,7 @@ def is_prime(n: int) -> bool:
>>> is_prime(25363)
False
"""
return seive[n]
return sieve[n]
def contains_an_even_digit(n: int) -> bool: