[pre-commit.ci] pre-commit autoupdate (#9543)

* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.0.291 → v0.0.292](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.291...v0.0.292)
- [github.com/codespell-project/codespell: v2.2.5 → v2.2.6](https://github.com/codespell-project/codespell/compare/v2.2.5...v2.2.6)
- [github.com/tox-dev/pyproject-fmt: 1.1.0 → 1.2.0](https://github.com/tox-dev/pyproject-fmt/compare/1.1.0...1.2.0)

* updating DIRECTORY.md

* Fix typos in test_min_spanning_tree_prim.py

* Fix typos

* codespell --ignore-words-list=manuel

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
pre-commit-ci[bot]
2023-10-07 21:32:28 +02:00
committed by GitHub
parent 60291738d2
commit 895dffb412
19 changed files with 98 additions and 119 deletions

View File

@ -2,7 +2,7 @@
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
Name - - CNN - Convolution Neural Network For Photo Recognizing
Goal - - Recognize Handing Writing Word Photo
DetailTotal 5 layers neural network
Detail: Total 5 layers neural network
* Convolution layer
* Pooling layer
* Input layer layer of BP
@ -24,7 +24,7 @@ class CNN:
self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, rate_t=0.2
):
"""
:param conv1_get: [a,c,d]size, number, step of convolution kernel
:param conv1_get: [a,c,d], size, number, step of convolution kernel
:param size_p1: pooling size
:param bp_num1: units number of flatten layer
:param bp_num2: units number of hidden layer
@ -71,7 +71,7 @@ class CNN:
with open(save_path, "wb") as f:
pickle.dump(model_dic, f)
print(f"Model saved {save_path}")
print(f"Model saved: {save_path}")
@classmethod
def read_model(cls, model_path):
@ -210,7 +210,7 @@ class CNN:
def train(
self, patterns, datas_train, datas_teach, n_repeat, error_accuracy, draw_e=bool
):
# model traning
# model training
print("----------------------Start Training-------------------------")
print((" - - Shape: Train_Data ", np.shape(datas_train)))
print((" - - Shape: Teach_Data ", np.shape(datas_teach)))

View File

@ -158,7 +158,7 @@ if __name__ == "__main__":
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
G_b7 = np.zeros(784)
# 3. For Adam Optimzier
# 3. For Adam Optimizer
v1, m1 = 0, 0
v2, m2 = 0, 0
v3, m3 = 0, 0