increment 1

This commit is contained in:
Alex Brown
2018-10-19 07:48:01 -05:00
parent 90979777c7
commit 718b99ae39
130 changed files with 0 additions and 14879 deletions

View File

@ -1,29 +0,0 @@
from __future__ import print_function
class FenwickTree:
def __init__(self, SIZE): # create fenwick tree with size SIZE
self.Size = SIZE
self.ft = [0 for i in range (0,SIZE)]
def update(self, i, val): # update data (adding) in index i in O(lg N)
while (i < self.Size):
self.ft[i] += val
i += i & (-i)
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
ret = 0
while (i > 0):
ret += self.ft[i]
i -= i & (-i)
return ret
if __name__ == '__main__':
f = FenwickTree(100)
f.update(1,20)
f.update(4,4)
print (f.query(1))
print (f.query(3))
print (f.query(4))
f.update(2,-5)
print (f.query(1))
print (f.query(3))

View File

@ -1,91 +0,0 @@
from __future__ import print_function
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l!=r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return True
if l >= a and r <= b :
self.st[idx] = val
if l!=r:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
# query with O(lg N)
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -1,71 +0,0 @@
from __future__ import print_function
import math
class SegmentTree:
def __init__(self, A):
self.N = len(A)
self.st = [0] * (4 * self.N) # approximate the overall size of segment tree with array N
self.build(1, 0, self.N - 1)
def left(self, idx):
return idx * 2
def right(self, idx):
return idx * 2 + 1
def build(self, idx, l, r):
if l == r:
self.st[idx] = A[l]
else:
mid = (l + r) // 2
self.build(self.left(idx), l, mid)
self.build(self.right(idx), mid + 1, r)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
def update(self, a, b, val):
return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val)
def update_recursive(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if r < a or l > b:
return True
if l == r :
self.st[idx] = val
return True
mid = (l+r)//2
self.update_recursive(self.left(idx), l, mid, a, b, val)
self.update_recursive(self.right(idx), mid+1, r, a, b, val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
def query(self, a, b):
return self.query_recursive(1, 0, self.N - 1, a - 1, b - 1)
def query_recursive(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query_recursive(self.left(idx), l, mid, a, b)
q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b)
return max(q1, q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(A)
print (segt.query(4, 6))
print (segt.query(7, 11))
print (segt.query(7, 12))
segt.update(1,3,111)
print (segt.query(1, 15))
segt.update(7,8,235)
segt.showData()

View File

@ -1,258 +0,0 @@
'''
A binary search Tree
'''
from __future__ import print_function
class Node:
def __init__(self, label, parent):
self.label = label
self.left = None
self.right = None
#Added in order to delete a node easier
self.parent = parent
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
new_node = Node(label, None)
# If Tree is empty
if self.empty():
self.root = new_node
else:
#If Tree is not empty
curr_node = self.root
#While we don't get to a leaf
while curr_node is not None:
#We keep reference of the parent node
parent_node = curr_node
#If node label is less than current node
if new_node.getLabel() < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
#We insert the new node in a leaf
if new_node.getLabel() < parent_node.getLabel():
parent_node.setLeft(new_node)
else:
parent_node.setRight(new_node)
#Set parent to the new node
new_node.setParent(parent_node)
def delete(self, label):
if (not self.empty()):
#Look for the node with that label
node = self.getNode(label)
#If the node exists
if(node is not None):
#If it has no children
if(node.getLeft() is None and node.getRight() is None):
self.__reassignNodes(node, None)
node = None
#Has only right children
elif(node.getLeft() is None and node.getRight() is not None):
self.__reassignNodes(node, node.getRight())
#Has only left children
elif(node.getLeft() is not None and node.getRight() is None):
self.__reassignNodes(node, node.getLeft())
#Has two children
else:
#Gets the max value of the left branch
tmpNode = self.getMax(node.getLeft())
#Deletes the tmpNode
self.delete(tmpNode.getLabel())
#Assigns the value to the node to delete and keesp tree structure
node.setLabel(tmpNode.getLabel())
def getNode(self, label):
curr_node = None
#If the tree is not empty
if(not self.empty()):
#Get tree root
curr_node = self.getRoot()
#While we don't find the node we look for
#I am using lazy evaluation here to avoid NoneType Attribute error
while curr_node is not None and curr_node.getLabel() is not label:
#If node label is less than current node
if label < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
return curr_node
def getMax(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the right branch
curr_node = self.getRoot()
if(not self.empty()):
while(curr_node.getRight() is not None):
curr_node = curr_node.getRight()
return curr_node
def getMin(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the left branch
curr_node = self.getRoot()
if(not self.empty()):
curr_node = self.getRoot()
while(curr_node.getLeft() is not None):
curr_node = curr_node.getLeft()
return curr_node
def empty(self):
if self.root is None:
return True
return False
def __InOrderTraversal(self, curr_node):
nodeList = []
if curr_node is not None:
nodeList.insert(0, curr_node)
nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
return nodeList
def getRoot(self):
return self.root
def __isRightChildren(self, node):
if(node == node.getParent().getRight()):
return True
return False
def __reassignNodes(self, node, newChildren):
if(newChildren is not None):
newChildren.setParent(node.getParent())
if(node.getParent() is not None):
#If it is the Right Children
if(self.__isRightChildren(node)):
node.getParent().setRight(newChildren)
else:
#Else it is the left children
node.getParent().setLeft(newChildren)
#This function traversal the tree. By default it returns an
#In order traversal list. You can pass a function to traversal
#The tree as needed by client code
def traversalTree(self, traversalFunction = None, root = None):
if(traversalFunction is None):
#Returns a list of nodes in preOrder by default
return self.__InOrderTraversal(self.root)
else:
#Returns a list of nodes in the order that the users wants to
return traversalFunction(self.root)
#Returns an string of all the nodes labels in the list
#In Order Traversal
def __str__(self):
list = self.__InOrderTraversal(self.root)
str = ""
for x in list:
str = str + " " + x.getLabel().__str__()
return str
def InPreOrder(curr_node):
nodeList = []
if curr_node is not None:
nodeList = nodeList + InPreOrder(curr_node.getLeft())
nodeList.insert(0, curr_node.getLabel())
nodeList = nodeList + InPreOrder(curr_node.getRight())
return nodeList
def testBinarySearchTree():
'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
'''
Example After Deletion
7
/ \
1 4
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(6)
t.insert(1)
t.insert(10)
t.insert(14)
t.insert(13)
t.insert(4)
t.insert(7)
#Prints all the elements of the list in order traversal
print(t.__str__())
if(t.getNode(6) is not None):
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if(t.getNode(-1) is not None):
print("The label -1 exists")
else:
print("The label -1 doesn't exist")
if(not t.empty()):
print(("Max Value: ", t.getMax().getLabel()))
print(("Min Value: ", t.getMin().getLabel()))
t.delete(13)
t.delete(10)
t.delete(8)
t.delete(3)
t.delete(6)
t.delete(14)
#Gets all the elements of the tree In pre order
#And it prints them
list = t.traversalTree(InPreOrder, t.root)
for x in list:
print(x)
if __name__ == "__main__":
testBinarySearchTree()