mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Made Changes shifted CRT, modular division to maths directory (#10084)
This commit is contained in:
@ -1,95 +0,0 @@
|
||||
"""
|
||||
Chinese Remainder Theorem:
|
||||
GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b
|
||||
there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are
|
||||
two such integers, then n1=n2(mod ab)
|
||||
|
||||
Algorithm :
|
||||
|
||||
1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
|
||||
2. Take n = ra*by + rb*ax
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
# Extended Euclid
|
||||
def extended_euclid(a: int, b: int) -> tuple[int, int]:
|
||||
"""
|
||||
>>> extended_euclid(10, 6)
|
||||
(-1, 2)
|
||||
|
||||
>>> extended_euclid(7, 5)
|
||||
(-2, 3)
|
||||
|
||||
"""
|
||||
if b == 0:
|
||||
return (1, 0)
|
||||
(x, y) = extended_euclid(b, a % b)
|
||||
k = a // b
|
||||
return (y, x - k * y)
|
||||
|
||||
|
||||
# Uses ExtendedEuclid to find inverses
|
||||
def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int:
|
||||
"""
|
||||
>>> chinese_remainder_theorem(5,1,7,3)
|
||||
31
|
||||
|
||||
Explanation : 31 is the smallest number such that
|
||||
(i) When we divide it by 5, we get remainder 1
|
||||
(ii) When we divide it by 7, we get remainder 3
|
||||
|
||||
>>> chinese_remainder_theorem(6,1,4,3)
|
||||
14
|
||||
|
||||
"""
|
||||
(x, y) = extended_euclid(n1, n2)
|
||||
m = n1 * n2
|
||||
n = r2 * x * n1 + r1 * y * n2
|
||||
return (n % m + m) % m
|
||||
|
||||
|
||||
# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid----------------
|
||||
|
||||
|
||||
# This function find the inverses of a i.e., a^(-1)
|
||||
def invert_modulo(a: int, n: int) -> int:
|
||||
"""
|
||||
>>> invert_modulo(2, 5)
|
||||
3
|
||||
|
||||
>>> invert_modulo(8,7)
|
||||
1
|
||||
|
||||
"""
|
||||
(b, x) = extended_euclid(a, n)
|
||||
if b < 0:
|
||||
b = (b % n + n) % n
|
||||
return b
|
||||
|
||||
|
||||
# Same a above using InvertingModulo
|
||||
def chinese_remainder_theorem2(n1: int, r1: int, n2: int, r2: int) -> int:
|
||||
"""
|
||||
>>> chinese_remainder_theorem2(5,1,7,3)
|
||||
31
|
||||
|
||||
>>> chinese_remainder_theorem2(6,1,4,3)
|
||||
14
|
||||
|
||||
"""
|
||||
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1)
|
||||
m = n1 * n2
|
||||
n = r2 * x * n1 + r1 * y * n2
|
||||
return (n % m + m) % m
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from doctest import testmod
|
||||
|
||||
testmod(name="chinese_remainder_theorem", verbose=True)
|
||||
testmod(name="chinese_remainder_theorem2", verbose=True)
|
||||
testmod(name="invert_modulo", verbose=True)
|
||||
testmod(name="extended_euclid", verbose=True)
|
@ -1,154 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def modular_division(a: int, b: int, n: int) -> int:
|
||||
"""
|
||||
Modular Division :
|
||||
An efficient algorithm for dividing b by a modulo n.
|
||||
|
||||
GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should
|
||||
return an integer x such that 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)).
|
||||
|
||||
Theorem:
|
||||
a has a multiplicative inverse modulo n iff gcd(a,n) = 1
|
||||
|
||||
|
||||
This find x = b*a^(-1) mod n
|
||||
Uses ExtendedEuclid to find the inverse of a
|
||||
|
||||
>>> modular_division(4,8,5)
|
||||
2
|
||||
|
||||
>>> modular_division(3,8,5)
|
||||
1
|
||||
|
||||
>>> modular_division(4, 11, 5)
|
||||
4
|
||||
|
||||
"""
|
||||
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
|
||||
(d, t, s) = extended_gcd(n, a) # Implemented below
|
||||
x = (b * s) % n
|
||||
return x
|
||||
|
||||
|
||||
def invert_modulo(a: int, n: int) -> int:
|
||||
"""
|
||||
This function find the inverses of a i.e., a^(-1)
|
||||
|
||||
>>> invert_modulo(2, 5)
|
||||
3
|
||||
|
||||
>>> invert_modulo(8,7)
|
||||
1
|
||||
|
||||
"""
|
||||
(b, x) = extended_euclid(a, n) # Implemented below
|
||||
if b < 0:
|
||||
b = (b % n + n) % n
|
||||
return b
|
||||
|
||||
|
||||
# ------------------ Finding Modular division using invert_modulo -------------------
|
||||
|
||||
|
||||
def modular_division2(a: int, b: int, n: int) -> int:
|
||||
"""
|
||||
This function used the above inversion of a to find x = (b*a^(-1))mod n
|
||||
|
||||
>>> modular_division2(4,8,5)
|
||||
2
|
||||
|
||||
>>> modular_division2(3,8,5)
|
||||
1
|
||||
|
||||
>>> modular_division2(4, 11, 5)
|
||||
4
|
||||
|
||||
"""
|
||||
s = invert_modulo(a, n)
|
||||
x = (b * s) % n
|
||||
return x
|
||||
|
||||
|
||||
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
|
||||
"""
|
||||
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x
|
||||
and y, then d = gcd(a,b)
|
||||
>>> extended_gcd(10, 6)
|
||||
(2, -1, 2)
|
||||
|
||||
>>> extended_gcd(7, 5)
|
||||
(1, -2, 3)
|
||||
|
||||
** extended_gcd function is used when d = gcd(a,b) is required in output
|
||||
|
||||
"""
|
||||
assert a >= 0 and b >= 0
|
||||
|
||||
if b == 0:
|
||||
d, x, y = a, 1, 0
|
||||
else:
|
||||
(d, p, q) = extended_gcd(b, a % b)
|
||||
x = q
|
||||
y = p - q * (a // b)
|
||||
|
||||
assert a % d == 0 and b % d == 0
|
||||
assert d == a * x + b * y
|
||||
|
||||
return (d, x, y)
|
||||
|
||||
|
||||
def extended_euclid(a: int, b: int) -> tuple[int, int]:
|
||||
"""
|
||||
Extended Euclid
|
||||
>>> extended_euclid(10, 6)
|
||||
(-1, 2)
|
||||
|
||||
>>> extended_euclid(7, 5)
|
||||
(-2, 3)
|
||||
|
||||
"""
|
||||
if b == 0:
|
||||
return (1, 0)
|
||||
(x, y) = extended_euclid(b, a % b)
|
||||
k = a // b
|
||||
return (y, x - k * y)
|
||||
|
||||
|
||||
def greatest_common_divisor(a: int, b: int) -> int:
|
||||
"""
|
||||
Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
|
||||
Euclid's Algorithm
|
||||
|
||||
>>> greatest_common_divisor(7,5)
|
||||
1
|
||||
|
||||
Note : In number theory, two integers a and b are said to be relatively prime,
|
||||
mutually prime, or co-prime if the only positive integer (factor) that divides
|
||||
both of them is 1 i.e., gcd(a,b) = 1.
|
||||
|
||||
>>> greatest_common_divisor(121, 11)
|
||||
11
|
||||
|
||||
"""
|
||||
if a < b:
|
||||
a, b = b, a
|
||||
|
||||
while a % b != 0:
|
||||
a, b = b, a % b
|
||||
|
||||
return b
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from doctest import testmod
|
||||
|
||||
testmod(name="modular_division", verbose=True)
|
||||
testmod(name="modular_division2", verbose=True)
|
||||
testmod(name="invert_modulo", verbose=True)
|
||||
testmod(name="extended_gcd", verbose=True)
|
||||
testmod(name="extended_euclid", verbose=True)
|
||||
testmod(name="greatest_common_divisor", verbose=True)
|
Reference in New Issue
Block a user