mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Rename coin_change.py to minimum_coin_change.py (#4108)
This commit is contained in:
46
dynamic_programming/minimum_coin_change.py
Normal file
46
dynamic_programming/minimum_coin_change.py
Normal file
@ -0,0 +1,46 @@
|
||||
"""
|
||||
You have m types of coins available in infinite quantities
|
||||
where the value of each coins is given in the array S=[S0,... Sm-1]
|
||||
Can you determine number of ways of making change for n units using
|
||||
the given types of coins?
|
||||
https://www.hackerrank.com/challenges/coin-change/problem
|
||||
"""
|
||||
|
||||
|
||||
def dp_count(S, n):
|
||||
"""
|
||||
>>> dp_count([1, 2, 3], 4)
|
||||
4
|
||||
>>> dp_count([1, 2, 3], 7)
|
||||
8
|
||||
>>> dp_count([2, 5, 3, 6], 10)
|
||||
5
|
||||
>>> dp_count([10], 99)
|
||||
0
|
||||
>>> dp_count([4, 5, 6], 0)
|
||||
1
|
||||
>>> dp_count([1, 2, 3], -5)
|
||||
0
|
||||
"""
|
||||
if n < 0:
|
||||
return 0
|
||||
# table[i] represents the number of ways to get to amount i
|
||||
table = [0] * (n + 1)
|
||||
|
||||
# There is exactly 1 way to get to zero(You pick no coins).
|
||||
table[0] = 1
|
||||
|
||||
# Pick all coins one by one and update table[] values
|
||||
# after the index greater than or equal to the value of the
|
||||
# picked coin
|
||||
for coin_val in S:
|
||||
for j in range(coin_val, n + 1):
|
||||
table[j] += table[j - coin_val]
|
||||
|
||||
return table[n]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Reference in New Issue
Block a user