isort --profile black . (#2181)

* updating DIRECTORY.md

* isort --profile black .

* Black after

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss
2020-07-06 09:44:19 +02:00
committed by GitHub
parent cd3e8f95a0
commit 5f4da5d616
80 changed files with 123 additions and 127 deletions

View File

@ -1,10 +1,9 @@
# Gaussian Naive Bayes Example
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import plot_confusion_matrix
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
def main():

View File

@ -52,11 +52,12 @@ Usage:
"""
import warnings
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.metrics import pairwise_distances
import warnings
warnings.filterwarnings("ignore")
@ -193,7 +194,7 @@ def kmeans(
# Mock test below
if False: # change to true to run this test case.
import sklearn.datasets as ds
from sklearn import datasets as ds
dataset = ds.load_iris()
k = 3

View File

@ -1,5 +1,6 @@
import numpy as np
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split

View File

@ -1,5 +1,5 @@
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# Load iris file

View File

@ -41,11 +41,9 @@
Author: @EverLookNeverSee
"""
from math import log
from os import name, system
from random import gauss
from random import seed
from random import gauss, seed
# Make a training dataset drawn from a gaussian distribution

View File

@ -7,8 +7,8 @@ We try to set the weight of these features, over many iterations, so that they b
fit our dataset. In this particular code, I had used a CSGO dataset (ADR vs
Rating). We try to best fit a line through dataset and estimate the parameters.
"""
import requests
import numpy as np
import requests
def collect_dataset():

View File

@ -14,14 +14,12 @@ Helpful resources:
Coursera ML course
https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
from sklearn import datasets
# get_ipython().run_line_magic('matplotlib', 'inline')
from sklearn import datasets
# In[67]:

View File

@ -4,14 +4,12 @@
* http://colah.github.io/posts/2015-08-Understanding-LSTMs
* https://en.wikipedia.org/wiki/Long_short-term_memory
"""
from keras.layers import Dense, LSTM
from keras.models import Sequential
import numpy as np
import pandas as pd
from keras.layers import LSTM, Dense
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
if __name__ == "__main__":
"""
First part of building a model is to get the data and prepare

View File

@ -1,6 +1,5 @@
from sklearn.neural_network import MLPClassifier
X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]]
y = [0, 1, 0, 0]

View File

@ -1,5 +1,5 @@
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set

View File

@ -1,10 +1,9 @@
# Random Forest Classifier Example
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
def main():

View File

@ -1,10 +1,8 @@
# Random Forest Regressor Example
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
def main():

View File

@ -36,9 +36,9 @@ import os
import sys
import urllib.request
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs, make_circles
from sklearn.preprocessing import StandardScaler

View File

@ -1,5 +1,5 @@
from sklearn.datasets import load_iris
from sklearn import svm
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split