mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Added A General Swish Activation Function inNeural Networks (#10415)
* Added A General Swish Activation Function inNeural Networks * Added the general swish function in the SiLU function and renamed it as swish.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Shivansh Bhatnagar <shivansh.bhatnagar.mat22@iitbhu.ac.in> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:

committed by
GitHub

parent
361f64c21d
commit
572de4f15e
75
neural_network/activation_functions/swish.py
Normal file
75
neural_network/activation_functions/swish.py
Normal file
@ -0,0 +1,75 @@
|
||||
"""
|
||||
This script demonstrates the implementation of the Sigmoid Linear Unit (SiLU)
|
||||
or swish function.
|
||||
* https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
|
||||
* https://en.wikipedia.org/wiki/Swish_function
|
||||
|
||||
The function takes a vector x of K real numbers as input and returns x * sigmoid(x).
|
||||
Swish is a smooth, non-monotonic function defined as f(x) = x * sigmoid(x).
|
||||
Extensive experiments shows that Swish consistently matches or outperforms ReLU
|
||||
on deep networks applied to a variety of challenging domains such as
|
||||
image classification and machine translation.
|
||||
|
||||
This script is inspired by a corresponding research paper.
|
||||
* https://arxiv.org/abs/1710.05941
|
||||
* https://blog.paperspace.com/swish-activation-function/
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sigmoid(vector: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Mathematical function sigmoid takes a vector x of K real numbers as input and
|
||||
returns 1/ (1 + e^-x).
|
||||
https://en.wikipedia.org/wiki/Sigmoid_function
|
||||
|
||||
>>> sigmoid(np.array([-1.0, 1.0, 2.0]))
|
||||
array([0.26894142, 0.73105858, 0.88079708])
|
||||
"""
|
||||
return 1 / (1 + np.exp(-vector))
|
||||
|
||||
|
||||
def sigmoid_linear_unit(vector: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Implements the Sigmoid Linear Unit (SiLU) or swish function
|
||||
|
||||
Parameters:
|
||||
vector (np.ndarray): A numpy array consisting of real values
|
||||
|
||||
Returns:
|
||||
swish_vec (np.ndarray): The input numpy array, after applying swish
|
||||
|
||||
Examples:
|
||||
>>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0]))
|
||||
array([-0.26894142, 0.73105858, 1.76159416])
|
||||
|
||||
>>> sigmoid_linear_unit(np.array([-2]))
|
||||
array([-0.23840584])
|
||||
"""
|
||||
return vector * sigmoid(vector)
|
||||
|
||||
|
||||
def swish(vector: np.ndarray, trainable_parameter: int) -> np.ndarray:
|
||||
"""
|
||||
Parameters:
|
||||
vector (np.ndarray): A numpy array consisting of real values
|
||||
trainable_parameter: Use to implement various Swish Activation Functions
|
||||
|
||||
Returns:
|
||||
swish_vec (np.ndarray): The input numpy array, after applying swish
|
||||
|
||||
Examples:
|
||||
>>> swish(np.array([-1.0, 1.0, 2.0]), 2)
|
||||
array([-0.11920292, 0.88079708, 1.96402758])
|
||||
|
||||
>>> swish(np.array([-2]), 1)
|
||||
array([-0.23840584])
|
||||
"""
|
||||
return vector * sigmoid(trainable_parameter * vector)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Reference in New Issue
Block a user