increment 1

This commit is contained in:
Alex Brown
2018-10-19 07:48:28 -05:00
parent 718b99ae39
commit 564179a0ec
131 changed files with 16252 additions and 0 deletions

View File

@ -0,0 +1,54 @@
from __future__ import print_function
def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float('inf') :
print(i,"\t",int(dist[i]),end = "\t")
else:
print(i,"\t","INF",end="\t")
print()
def BellmanFord(graph, V, E, src):
mdist=[float('inf') for i in range(V)]
mdist[src] = 0.0
for i in range(V-1):
for j in range(V):
u = graph[j]["src"]
v = graph[j]["dst"]
w = graph[j]["weight"]
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
mdist[v] = mdist[u] + w
for j in range(V):
u = graph[j]["src"]
v = graph[j]["dst"]
w = graph[j]["weight"]
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
print("Negative cycle found. Solution not possible.")
return
printDist(mdist, V)
#MAIN
V = int(raw_input("Enter number of vertices: "))
E = int(raw_input("Enter number of edges: "))
graph = [dict() for j in range(E)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(raw_input("Enter source:"))
dst = int(raw_input("Enter destination:"))
weight = float(raw_input("Enter weight:"))
graph[i] = {"src": src,"dst": dst, "weight": weight}
gsrc = int(raw_input("\nEnter shortest path source:"))
BellmanFord(graph, V, E, gsrc)

View File

@ -0,0 +1,67 @@
#!/usr/bin/python
# encoding=utf8
""" Author: OMKAR PATHAK """
from __future__ import print_function
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
def BFS(self, startVertex):
# Take a list for stoting already visited vertexes
visited = [False] * len(self.vertex)
# create a list to store all the vertexes for BFS
queue = []
# mark the source node as visited and enqueue it
visited[startVertex] = True
queue.append(startVertex)
while queue:
startVertex = queue.pop(0)
print(startVertex, end = ' ')
# mark all adjacent nodes as visited and print them
for i in self.vertex[startVertex]:
if visited[i] == False:
queue.append(i)
visited[i] = True
if __name__ == '__main__':
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.printGraph()
print('BFS:')
g.BFS(2)
# OUTPUT:
# 0  ->  1 -> 2
# 1  ->  2
# 2  ->  0 -> 3
# 3  ->  3
# BFS:
# 2 0 3 1

View File

@ -0,0 +1,66 @@
#!/usr/bin/python
# encoding=utf8
""" Author: OMKAR PATHAK """
from __future__ import print_function
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
print(self.vertex)
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
def DFS(self):
# visited array for storing already visited nodes
visited = [False] * len(self.vertex)
# call the recursive helper function
for i in range(len(self.vertex)):
if visited[i] == False:
self.DFSRec(i, visited)
def DFSRec(self, startVertex, visited):
# mark start vertex as visited
visited[startVertex] = True
print(startVertex, end = ' ')
# Recur for all the vertexes that are adjacent to this node
for i in self.vertex.keys():
if visited[i] == False:
self.DFSRec(i, visited)
if __name__ == '__main__':
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.printGraph()
print('DFS:')
g.DFS()
# OUTPUT:
# 0  ->  1 -> 2
# 1  ->  2
# 2  ->  0 -> 3
# 3  ->  3
# DFS:
# 0 1 2 3

View File

@ -0,0 +1,57 @@
from __future__ import print_function
def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float('inf') :
print(i,"\t",int(dist[i]),end = "\t")
else:
print(i,"\t","INF",end="\t")
print()
def minDist(mdist, vset, V):
minVal = float('inf')
minInd = -1
for i in range(V):
if (not vset[i]) and mdist[i] < minVal :
minInd = i
minVal = mdist[i]
return minInd
def Dijkstra(graph, V, src):
mdist=[float('inf') for i in range(V)]
vset = [False for i in range(V)]
mdist[src] = 0.0;
for i in range(V-1):
u = minDist(mdist, vset, V)
vset[u] = True
for v in range(V):
if (not vset[v]) and graph[u][v]!=float('inf') and mdist[u] + graph[u][v] < mdist[v]:
mdist[v] = mdist[u] + graph[u][v]
printDist(mdist, V)
#MAIN
V = int(raw_input("Enter number of vertices: "))
E = int(raw_input("Enter number of edges: "))
graph = [[float('inf') for i in range(V)] for j in range(V)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(raw_input("Enter source:"))
dst = int(raw_input("Enter destination:"))
weight = float(raw_input("Enter weight:"))
graph[src][dst] = weight
gsrc = int(raw_input("\nEnter shortest path source:"))
Dijkstra(graph, V, gsrc)

View File

@ -0,0 +1,212 @@
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
# Author: Shubham Malik
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
from __future__ import print_function
import math
import sys
# For storing the vertex set to retreive node with the lowest distance
class PriorityQueue:
# Based on Min Heap
def __init__(self):
self.cur_size = 0
self.array = []
self.pos = {} # To store the pos of node in array
def isEmpty(self):
return self.cur_size == 0
def min_heapify(self, idx):
lc = self.left(idx)
rc = self.right(idx)
if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
smallest = lc
else:
smallest = idx
if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
smallest = rc
if smallest != idx:
self.swap(idx, smallest)
self.min_heapify(smallest)
def insert(self, tup):
# Inserts a node into the Priority Queue
self.pos[tup[1]] = self.cur_size
self.cur_size += 1
self.array.append((sys.maxsize, tup[1]))
self.decrease_key((sys.maxsize, tup[1]), tup[0])
def extract_min(self):
# Removes and returns the min element at top of priority queue
min_node = self.array[0][1]
self.array[0] = self.array[self.cur_size - 1]
self.cur_size -= 1
self.min_heapify(1)
del self.pos[min_node]
return min_node
def left(self, i):
# returns the index of left child
return 2 * i + 1
def right(self, i):
# returns the index of right child
return 2 * i + 2
def par(self, i):
# returns the index of parent
return math.floor(i / 2)
def swap(self, i, j):
# swaps array elements at indices i and j
# update the pos{}
self.pos[self.array[i][1]] = j
self.pos[self.array[j][1]] = i
temp = self.array[i]
self.array[i] = self.array[j]
self.array[j] = temp
def decrease_key(self, tup, new_d):
idx = self.pos[tup[1]]
# assuming the new_d is atmost old_d
self.array[idx] = (new_d, tup[1])
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
self.swap(idx, self.par(idx))
idx = self.par(idx)
class Graph:
def __init__(self, num):
self.adjList = {} # To store graph: u -> (v,w)
self.num_nodes = num # Number of nodes in graph
# To store the distance from source vertex
self.dist = [0] * self.num_nodes
self.par = [-1] * self.num_nodes # To store the path
def add_edge(self, u, v, w):
# Edge going from node u to v and v to u with weight w
# u (w)-> v, v (w) -> u
# Check if u already in graph
if u in self.adjList.keys():
self.adjList[u].append((v, w))
else:
self.adjList[u] = [(v, w)]
# Assuming undirected graph
if v in self.adjList.keys():
self.adjList[v].append((u, w))
else:
self.adjList[v] = [(u, w)]
def show_graph(self):
# u -> v(w)
for u in self.adjList:
print(u, '->', ' -> '.join(str("{}({})".format(v, w))
for v, w in self.adjList[u]))
def dijkstra(self, src):
# Flush old junk values in par[]
self.par = [-1] * self.num_nodes
# src is the source node
self.dist[src] = 0
Q = PriorityQueue()
Q.insert((0, src)) # (dist from src, node)
for u in self.adjList.keys():
if u != src:
self.dist[u] = sys.maxsize # Infinity
self.par[u] = -1
while not Q.isEmpty():
u = Q.extract_min() # Returns node with the min dist from source
# Update the distance of all the neighbours of u and
# if their prev dist was INFINITY then push them in Q
for v, w in self.adjList[u]:
new_dist = self.dist[u] + w
if self.dist[v] > new_dist:
if self.dist[v] == sys.maxsize:
Q.insert((new_dist, v))
else:
Q.decrease_key((self.dist[v], v), new_dist)
self.dist[v] = new_dist
self.par[v] = u
# Show the shortest distances from src
self.show_distances(src)
def show_distances(self, src):
print("Distance from node: {}".format(src))
for u in range(self.num_nodes):
print('Node {} has distance: {}'.format(u, self.dist[u]))
def show_path(self, src, dest):
# To show the shortest path from src to dest
# WARNING: Use it *after* calling dijkstra
path = []
cost = 0
temp = dest
# Backtracking from dest to src
while self.par[temp] != -1:
path.append(temp)
if temp != src:
for v, w in self.adjList[temp]:
if v == self.par[temp]:
cost += w
break
temp = self.par[temp]
path.append(src)
path.reverse()
print('----Path to reach {} from {}----'.format(dest, src))
for u in path:
print('{}'.format(u), end=' ')
if u != dest:
print('-> ', end='')
print('\nTotal cost of path: ', cost)
if __name__ == '__main__':
graph = Graph(9)
graph.add_edge(0, 1, 4)
graph.add_edge(0, 7, 8)
graph.add_edge(1, 2, 8)
graph.add_edge(1, 7, 11)
graph.add_edge(2, 3, 7)
graph.add_edge(2, 8, 2)
graph.add_edge(2, 5, 4)
graph.add_edge(3, 4, 9)
graph.add_edge(3, 5, 14)
graph.add_edge(4, 5, 10)
graph.add_edge(5, 6, 2)
graph.add_edge(6, 7, 1)
graph.add_edge(6, 8, 6)
graph.add_edge(7, 8, 7)
graph.show_graph()
graph.dijkstra(0)
graph.show_path(0, 4)
# OUTPUT
# 0 -> 1(4) -> 7(8)
# 1 -> 0(4) -> 2(8) -> 7(11)
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
# 3 -> 2(7) -> 4(9) -> 5(14)
# 8 -> 2(2) -> 6(6) -> 7(7)
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
# 4 -> 3(9) -> 5(10)
# 6 -> 5(2) -> 7(1) -> 8(6)
# Distance from node: 0
# Node 0 has distance: 0
# Node 1 has distance: 4
# Node 2 has distance: 12
# Node 3 has distance: 19
# Node 4 has distance: 21
# Node 5 has distance: 11
# Node 6 has distance: 9
# Node 7 has distance: 8
# Node 8 has distance: 14
# ----Path to reach 4 from 0----
# 0 -> 7 -> 6 -> 5 -> 4
# Total cost of path: 21

View File

@ -0,0 +1,70 @@
"""
You are given a tree(a simple connected graph with no cycles). The tree has N
nodes numbered from 1 to N and is rooted at node 1.
Find the maximum number of edges you can remove from the tree to get a forest
such that each connected component of the forest contains an even number of
nodes.
Constraints
2 <= 2 <= 100
Note: The tree input will be such that it can always be decomposed into
components containing an even number of nodes.
"""
from __future__ import print_function
# pylint: disable=invalid-name
from collections import defaultdict
def dfs(start):
"""DFS traversal"""
# pylint: disable=redefined-outer-name
ret = 1
visited[start] = True
for v in tree.get(start):
if v not in visited:
ret += dfs(v)
if ret % 2 == 0:
cuts.append(start)
return ret
def even_tree():
"""
2 1
3 1
4 3
5 2
6 1
7 2
8 6
9 8
10 8
On removing edges (1,3) and (1,6), we can get the desired result 2.
"""
dfs(1)
if __name__ == '__main__':
n, m = 10, 9
tree = defaultdict(list)
visited = {}
cuts = []
count = 0
edges = [
(2, 1),
(3, 1),
(4, 3),
(5, 2),
(6, 1),
(7, 2),
(8, 6),
(9, 8),
(10, 8),
]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)

View File

@ -0,0 +1,48 @@
from __future__ import print_function
def printDist(dist, V):
print("\nThe shortest path matrix using Floyd Warshall algorithm\n")
for i in range(V):
for j in range(V):
if dist[i][j] != float('inf') :
print(int(dist[i][j]),end = "\t")
else:
print("INF",end="\t")
print()
def FloydWarshall(graph, V):
dist=[[float('inf') for i in range(V)] for j in range(V)]
for i in range(V):
for j in range(V):
dist[i][j] = graph[i][j]
for k in range(V):
for i in range(V):
for j in range(V):
if dist[i][k]!=float('inf') and dist[k][j]!=float('inf') and dist[i][k]+dist[k][j] < dist[i][j]:
dist[i][j] = dist[i][k] + dist[k][j]
printDist(dist, V)
#MAIN
V = int(raw_input("Enter number of vertices: "))
E = int(raw_input("Enter number of edges: "))
graph = [[float('inf') for i in range(V)] for j in range(V)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(raw_input("Enter source:"))
dst = int(raw_input("Enter destination:"))
weight = float(raw_input("Enter weight:"))
graph[src][dst] = weight
FloydWarshall(graph, V)

View File

@ -0,0 +1,44 @@
#!/usr/bin/python
# encoding=utf8
from __future__ import print_function
# Author: OMKAR PATHAK
# We can use Python's dictionary for constructing the graph
class AdjacencyList(object):
def __init__(self):
self.List = {}
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present
if fromVertex in self.List.keys():
self.List[fromVertex].append(toVertex)
else:
self.List[fromVertex] = [toVertex]
def printList(self):
for i in self.List:
print((i,'->',' -> '.join([str(j) for j in self.List[i]])))
if __name__ == '__main__':
al = AdjacencyList()
al.addEdge(0, 1)
al.addEdge(0, 4)
al.addEdge(4, 1)
al.addEdge(4, 3)
al.addEdge(1, 0)
al.addEdge(1, 4)
al.addEdge(1, 3)
al.addEdge(1, 2)
al.addEdge(2, 3)
al.addEdge(3, 4)
al.printList()
# OUTPUT:
# 0 -> 1 -> 4
# 1 -> 0 -> 4 -> 3 -> 2
# 2 -> 3
# 3 -> 4
# 4 -> 1 -> 3

View File

@ -0,0 +1,31 @@
from __future__ import print_function
class Graph:
def __init__(self, vertex):
self.vertex = vertex
self.graph = [[0] for i in range(vertex)]
def add_edge(self, u, v):
self.graph[u - 1].append(v - 1)
def show(self):
for i in range(self.vertex):
print('%d: '% (i + 1), end=' ')
for j in self.graph[i]:
print('%d-> '% (j + 1), end=' ')
print(' ')
g = Graph(100)
g.add_edge(1,3)
g.add_edge(2,3)
g.add_edge(3,4)
g.add_edge(3,5)
g.add_edge(4,5)
g.show()

View File

@ -0,0 +1,32 @@
from __future__ import print_function
class Graph:
def __init__(self, vertex):
self.vertex = vertex
self.graph = [[0] * vertex for i in range(vertex) ]
def add_edge(self, u, v):
self.graph[u - 1][v - 1] = 1
self.graph[v - 1][u - 1] = 1
def show(self):
for i in self.graph:
for j in i:
print(j, end=' ')
print(' ')
g = Graph(100)
g.add_edge(1,4)
g.add_edge(4,2)
g.add_edge(4,5)
g.add_edge(2,5)
g.add_edge(5,3)
g.show()