mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Modernize Python 2 code to get ready for Python 3
This commit is contained in:
@ -3,6 +3,7 @@ Implementation of a basic regression decision tree.
|
||||
Input data set: The input data set must be 1-dimensional with continuous labels.
|
||||
Output: The decision tree maps a real number input to a real number output.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis function.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
import numpy
|
||||
|
||||
# List of input, output pairs
|
||||
@ -106,13 +107,13 @@ def run_gradient_descent():
|
||||
atol=absolute_error_limit, rtol=relative_error_limit):
|
||||
break
|
||||
parameter_vector = temp_parameter_vector
|
||||
print("Number of iterations:", j)
|
||||
print(("Number of iterations:", j))
|
||||
|
||||
|
||||
def test_gradient_descent():
|
||||
for i in range(len(test_data)):
|
||||
print("Actual output value:", output(i, 'test'))
|
||||
print("Hypothesis output:", calculate_hypothesis_value(i, 'test'))
|
||||
print(("Actual output value:", output(i, 'test')))
|
||||
print(("Hypothesis output:", calculate_hypothesis_value(i, 'test')))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -7,6 +7,7 @@ We try to set these Feature weights, over many iterations, so that they best
|
||||
fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs
|
||||
Rating). We try to best fit a line through dataset and estimate the parameters.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
import requests
|
||||
import numpy as np
|
||||
|
@ -9,6 +9,7 @@
|
||||
p2 = 1
|
||||
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
import random
|
||||
|
||||
@ -52,7 +53,7 @@ class Perceptron:
|
||||
epoch_count = epoch_count + 1
|
||||
# if you want controle the epoch or just by erro
|
||||
if erro == False:
|
||||
print('\nEpoch:\n',epoch_count)
|
||||
print(('\nEpoch:\n',epoch_count))
|
||||
print('------------------------\n')
|
||||
#if epoch_count > self.epoch_number or not erro:
|
||||
break
|
||||
@ -66,10 +67,10 @@ class Perceptron:
|
||||
y = self.sign(u)
|
||||
|
||||
if y == -1:
|
||||
print('Sample: ', sample)
|
||||
print(('Sample: ', sample))
|
||||
print('classification: P1')
|
||||
else:
|
||||
print('Sample: ', sample)
|
||||
print(('Sample: ', sample))
|
||||
print('classification: P2')
|
||||
|
||||
def sign(self, u):
|
||||
|
@ -1,4 +1,4 @@
|
||||
import numpy
|
||||
import numpy as np
|
||||
|
||||
""" Here I implemented the scoring functions.
|
||||
MAE, MSE, RMSE, RMSLE are included.
|
||||
|
Reference in New Issue
Block a user