mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-27 18:43:52 +08:00
Modernize Python 2 code to get ready for Python 3
This commit is contained in:
@ -4,9 +4,14 @@ If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
n = int(raw_input().strip())
|
||||
sum=0;
|
||||
sum=0
|
||||
for a in range(3,n):
|
||||
if(a%3==0 or a%5==0):
|
||||
sum+=a
|
||||
print sum;
|
||||
print(sum)
|
||||
|
@ -4,6 +4,11 @@ If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
n = int(raw_input().strip())
|
||||
sum = 0
|
||||
terms = (n-1)/3
|
||||
@ -12,4 +17,4 @@ terms = (n-1)/5
|
||||
sum+= ((terms)*(10+(terms-1)*5))/2
|
||||
terms = (n-1)/15
|
||||
sum-= ((terms)*(30+(terms-1)*15))/2
|
||||
print sum
|
||||
print(sum)
|
||||
|
@ -7,6 +7,11 @@ Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
n = int(raw_input().strip())
|
||||
sum=0;
|
||||
num=0;
|
||||
@ -39,4 +44,4 @@ while(1):
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
print sum;
|
||||
print(sum);
|
||||
|
@ -6,6 +6,12 @@ the first 10 terms will be:
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
|
||||
n = int(raw_input().strip())
|
||||
i=1; j=2; sum=0
|
||||
@ -15,4 +21,4 @@ while(j<=n):
|
||||
temp=i
|
||||
i=j
|
||||
j=temp+i
|
||||
print sum
|
||||
print(sum)
|
||||
|
@ -3,6 +3,7 @@ Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
|
||||
@ -20,12 +21,12 @@ def isprime(no):
|
||||
max=0
|
||||
n=int(input())
|
||||
if(isprime(n)):
|
||||
print n
|
||||
print(n)
|
||||
else:
|
||||
while (n%2==0):
|
||||
n=n/2
|
||||
if(isprime(n)):
|
||||
print n
|
||||
print(n)
|
||||
else:
|
||||
n1 = int(math.sqrt(n))+1
|
||||
for i in range(3,n1,2):
|
||||
@ -35,4 +36,4 @@ else:
|
||||
break
|
||||
elif(isprime(i)):
|
||||
max=i
|
||||
print max
|
||||
print(max)
|
||||
|
@ -3,6 +3,7 @@ Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
n=int(input())
|
||||
prime=1
|
||||
i=2
|
||||
@ -13,4 +14,4 @@ while(i*i<=n):
|
||||
i+=1
|
||||
if(n>1):
|
||||
prime=n
|
||||
print prime
|
||||
print(prime)
|
||||
|
@ -3,6 +3,7 @@ Problem:
|
||||
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
n=int(input())
|
||||
for i in range(n-1,10000,-1):
|
||||
temp=str(i)
|
||||
@ -10,6 +11,6 @@ for i in range(n-1,10000,-1):
|
||||
j=999
|
||||
while(j!=99):
|
||||
if((i%j==0) and (len(str(i/j))==3)):
|
||||
print i
|
||||
print(i)
|
||||
exit(0)
|
||||
j-=1
|
||||
|
@ -3,6 +3,7 @@ Problem:
|
||||
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
arr = []
|
||||
for i in range(999,100,-1):
|
||||
for j in range(999,100,-1):
|
||||
@ -14,5 +15,5 @@ arr.sort()
|
||||
n=int(input())
|
||||
for i in arr[::-1]:
|
||||
if(i<n):
|
||||
print i
|
||||
print(i)
|
||||
exit(0)
|
@ -3,6 +3,7 @@ Problem:
|
||||
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
||||
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
n = int(input())
|
||||
i = 0
|
||||
@ -16,5 +17,5 @@ while 1:
|
||||
if(nfound==0):
|
||||
if(i==0):
|
||||
i=1
|
||||
print i
|
||||
print(i)
|
||||
break
|
@ -8,6 +8,7 @@ The square of the sum of the first ten natural numbers is,
|
||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
suma = 0
|
||||
sumb = 0
|
||||
@ -16,4 +17,4 @@ for i in range(1,n+1):
|
||||
suma += i**2
|
||||
sumb += i
|
||||
sum = sumb**2 - suma
|
||||
print sum
|
||||
print(sum)
|
@ -8,8 +8,9 @@ The square of the sum of the first ten natural numbers is,
|
||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
n = int(input())
|
||||
suma = n*(n+1)/2
|
||||
suma **= 2
|
||||
sumb = n*(n+1)*(2*n+1)/6
|
||||
print suma-sumb
|
||||
print(suma-sumb)
|
@ -3,6 +3,7 @@ By listing the first six prime numbers:
|
||||
2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
|
||||
What is the Nth prime number?
|
||||
'''
|
||||
from __future__ import print_function
|
||||
from math import sqrt
|
||||
def isprime(n):
|
||||
if (n==2):
|
||||
@ -26,4 +27,4 @@ while(i!=n):
|
||||
j+=2
|
||||
if(isprime(j)):
|
||||
i+=1
|
||||
print j
|
||||
print(j)
|
@ -2,6 +2,7 @@
|
||||
Problem Statement:
|
||||
Work out the first ten digits of the sum of the N 50-digit numbers.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
n = int(input().strip())
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
from __future__ import print_function
|
||||
largest_number = 0
|
||||
pre_counter = 0
|
||||
|
||||
@ -17,4 +18,4 @@ for input1 in range(750000,1000000):
|
||||
largest_number = input1
|
||||
pre_counter = counter
|
||||
|
||||
print('Largest Number:',largest_number,'->',pre_counter,'digits')
|
||||
print(('Largest Number:',largest_number,'->',pre_counter,'digits'))
|
||||
|
@ -1,3 +1,4 @@
|
||||
from __future__ import print_function
|
||||
# Program to find the product of a,b,c which are Pythagorean Triplet that satisfice the following:
|
||||
# 1. a < b < c
|
||||
# 2. a**2 + b**2 = c**2
|
||||
@ -10,5 +11,5 @@ for a in range(300):
|
||||
if(a < b < c):
|
||||
if((a**2) + (b**2) == (c**2)):
|
||||
if((a+b+c) == 1000):
|
||||
print("Product of",a,"*",b,"*",c,"=",(a*b*c))
|
||||
print(("Product of",a,"*",b,"*",c,"=",(a*b*c)))
|
||||
break
|
||||
|
Reference in New Issue
Block a user