mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-20 19:42:45 +08:00
Optimized recursive_bubble_sort (#2410)
* optimized recursive_bubble_sort * Fixed doctest error due whitespace * reduce loop times for optimization * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
@ -43,8 +43,8 @@ from math import sqrt
|
||||
|
||||
def isPrime(number):
|
||||
"""
|
||||
input: positive integer 'number'
|
||||
returns true if 'number' is prime otherwise false.
|
||||
input: positive integer 'number'
|
||||
returns true if 'number' is prime otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -77,11 +77,11 @@ def isPrime(number):
|
||||
|
||||
def sieveEr(N):
|
||||
"""
|
||||
input: positive integer 'N' > 2
|
||||
returns a list of prime numbers from 2 up to N.
|
||||
input: positive integer 'N' > 2
|
||||
returns a list of prime numbers from 2 up to N.
|
||||
|
||||
This function implements the algorithm called
|
||||
sieve of erathostenes.
|
||||
This function implements the algorithm called
|
||||
sieve of erathostenes.
|
||||
|
||||
"""
|
||||
|
||||
@ -115,9 +115,9 @@ def sieveEr(N):
|
||||
|
||||
def getPrimeNumbers(N):
|
||||
"""
|
||||
input: positive integer 'N' > 2
|
||||
returns a list of prime numbers from 2 up to N (inclusive)
|
||||
This function is more efficient as function 'sieveEr(...)'
|
||||
input: positive integer 'N' > 2
|
||||
returns a list of prime numbers from 2 up to N (inclusive)
|
||||
This function is more efficient as function 'sieveEr(...)'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -144,8 +144,8 @@ def getPrimeNumbers(N):
|
||||
|
||||
def primeFactorization(number):
|
||||
"""
|
||||
input: positive integer 'number'
|
||||
returns a list of the prime number factors of 'number'
|
||||
input: positive integer 'number'
|
||||
returns a list of the prime number factors of 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -188,8 +188,8 @@ def primeFactorization(number):
|
||||
|
||||
def greatestPrimeFactor(number):
|
||||
"""
|
||||
input: positive integer 'number' >= 0
|
||||
returns the greatest prime number factor of 'number'
|
||||
input: positive integer 'number' >= 0
|
||||
returns the greatest prime number factor of 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -215,8 +215,8 @@ def greatestPrimeFactor(number):
|
||||
|
||||
def smallestPrimeFactor(number):
|
||||
"""
|
||||
input: integer 'number' >= 0
|
||||
returns the smallest prime number factor of 'number'
|
||||
input: integer 'number' >= 0
|
||||
returns the smallest prime number factor of 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -242,8 +242,8 @@ def smallestPrimeFactor(number):
|
||||
|
||||
def isEven(number):
|
||||
"""
|
||||
input: integer 'number'
|
||||
returns true if 'number' is even, otherwise false.
|
||||
input: integer 'number'
|
||||
returns true if 'number' is even, otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -258,8 +258,8 @@ def isEven(number):
|
||||
|
||||
def isOdd(number):
|
||||
"""
|
||||
input: integer 'number'
|
||||
returns true if 'number' is odd, otherwise false.
|
||||
input: integer 'number'
|
||||
returns true if 'number' is odd, otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -274,9 +274,9 @@ def isOdd(number):
|
||||
|
||||
def goldbach(number):
|
||||
"""
|
||||
Goldbach's assumption
|
||||
input: a even positive integer 'number' > 2
|
||||
returns a list of two prime numbers whose sum is equal to 'number'
|
||||
Goldbach's assumption
|
||||
input: a even positive integer 'number' > 2
|
||||
returns a list of two prime numbers whose sum is equal to 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -329,9 +329,9 @@ def goldbach(number):
|
||||
|
||||
def gcd(number1, number2):
|
||||
"""
|
||||
Greatest common divisor
|
||||
input: two positive integer 'number1' and 'number2'
|
||||
returns the greatest common divisor of 'number1' and 'number2'
|
||||
Greatest common divisor
|
||||
input: two positive integer 'number1' and 'number2'
|
||||
returns the greatest common divisor of 'number1' and 'number2'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -363,9 +363,9 @@ def gcd(number1, number2):
|
||||
|
||||
def kgV(number1, number2):
|
||||
"""
|
||||
Least common multiple
|
||||
input: two positive integer 'number1' and 'number2'
|
||||
returns the least common multiple of 'number1' and 'number2'
|
||||
Least common multiple
|
||||
input: two positive integer 'number1' and 'number2'
|
||||
returns the least common multiple of 'number1' and 'number2'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -443,9 +443,9 @@ def kgV(number1, number2):
|
||||
|
||||
def getPrime(n):
|
||||
"""
|
||||
Gets the n-th prime number.
|
||||
input: positive integer 'n' >= 0
|
||||
returns the n-th prime number, beginning at index 0
|
||||
Gets the n-th prime number.
|
||||
input: positive integer 'n' >= 0
|
||||
returns the n-th prime number, beginning at index 0
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -478,10 +478,10 @@ def getPrime(n):
|
||||
|
||||
def getPrimesBetween(pNumber1, pNumber2):
|
||||
"""
|
||||
input: prime numbers 'pNumber1' and 'pNumber2'
|
||||
pNumber1 < pNumber2
|
||||
returns a list of all prime numbers between 'pNumber1' (exclusive)
|
||||
and 'pNumber2' (exclusive)
|
||||
input: prime numbers 'pNumber1' and 'pNumber2'
|
||||
pNumber1 < pNumber2
|
||||
returns a list of all prime numbers between 'pNumber1' (exclusive)
|
||||
and 'pNumber2' (exclusive)
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -522,8 +522,8 @@ def getPrimesBetween(pNumber1, pNumber2):
|
||||
|
||||
def getDivisors(n):
|
||||
"""
|
||||
input: positive integer 'n' >= 1
|
||||
returns all divisors of n (inclusive 1 and 'n')
|
||||
input: positive integer 'n' >= 1
|
||||
returns all divisors of n (inclusive 1 and 'n')
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -547,8 +547,8 @@ def getDivisors(n):
|
||||
|
||||
def isPerfectNumber(number):
|
||||
"""
|
||||
input: positive integer 'number' > 1
|
||||
returns true if 'number' is a perfect number otherwise false.
|
||||
input: positive integer 'number' > 1
|
||||
returns true if 'number' is a perfect number otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -574,9 +574,9 @@ def isPerfectNumber(number):
|
||||
|
||||
def simplifyFraction(numerator, denominator):
|
||||
"""
|
||||
input: two integer 'numerator' and 'denominator'
|
||||
assumes: 'denominator' != 0
|
||||
returns: a tuple with simplify numerator and denominator.
|
||||
input: two integer 'numerator' and 'denominator'
|
||||
assumes: 'denominator' != 0
|
||||
returns: a tuple with simplify numerator and denominator.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -604,8 +604,8 @@ def simplifyFraction(numerator, denominator):
|
||||
|
||||
def factorial(n):
|
||||
"""
|
||||
input: positive integer 'n'
|
||||
returns the factorial of 'n' (n!)
|
||||
input: positive integer 'n'
|
||||
returns the factorial of 'n' (n!)
|
||||
"""
|
||||
|
||||
# precondition
|
||||
@ -624,8 +624,8 @@ def factorial(n):
|
||||
|
||||
def fib(n):
|
||||
"""
|
||||
input: positive integer 'n'
|
||||
returns the n-th fibonacci term , indexing by 0
|
||||
input: positive integer 'n'
|
||||
returns the n-th fibonacci term , indexing by 0
|
||||
"""
|
||||
|
||||
# precondition
|
||||
|
Reference in New Issue
Block a user