mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-22 05:16:39 +08:00
Remove separate directory for gaussian_elimination_pivoting.py
(#11445)
* updating DIRECTORY.md * Remove separate directory for gaussian_elimination_pivoting.py Delete the directory linear_algebra/src/gaussian_elimination_pivoting/ and move its algorithm file, gaussian_elimination_pivoting.py, into the parent src/ directory. The gaussian_elimination_pivoting/ directory only exists because gaussian_elimination_pivoting.py reads an example numpy array from matrix.txt, but this input file and IO operation is entirely unnecessary because gaussian_elimination_pivoting.py already has the exact same array hard-coded into a variable. * updating DIRECTORY.md --------- Co-authored-by: tianyizheng02 <tianyizheng02@users.noreply.github.com>
This commit is contained in:
94
linear_algebra/src/gaussian_elimination_pivoting.py
Normal file
94
linear_algebra/src/gaussian_elimination_pivoting.py
Normal file
@ -0,0 +1,94 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def solve_linear_system(matrix: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Solve a linear system of equations using Gaussian elimination with partial pivoting
|
||||
|
||||
Args:
|
||||
- matrix: Coefficient matrix with the last column representing the constants.
|
||||
|
||||
Returns:
|
||||
- Solution vector.
|
||||
|
||||
Raises:
|
||||
- ValueError: If the matrix is not correct (i.e., singular).
|
||||
|
||||
https://courses.engr.illinois.edu/cs357/su2013/lect.htm Lecture 7
|
||||
|
||||
Example:
|
||||
>>> A = np.array([[2, 1, -1], [-3, -1, 2], [-2, 1, 2]], dtype=float)
|
||||
>>> B = np.array([8, -11, -3], dtype=float)
|
||||
>>> solution = solve_linear_system(np.column_stack((A, B)))
|
||||
>>> np.allclose(solution, np.array([2., 3., -1.]))
|
||||
True
|
||||
>>> solve_linear_system(np.array([[0, 0], [0, 0]], dtype=float))
|
||||
array([nan, nan])
|
||||
"""
|
||||
ab = np.copy(matrix)
|
||||
num_of_rows = ab.shape[0]
|
||||
num_of_columns = ab.shape[1] - 1
|
||||
x_lst: list[float] = []
|
||||
|
||||
# Lead element search
|
||||
for column_num in range(num_of_rows):
|
||||
for i in range(column_num, num_of_columns):
|
||||
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
|
||||
ab[[column_num, i]] = ab[[i, column_num]]
|
||||
if ab[column_num, column_num] == 0.0:
|
||||
raise ValueError("Matrix is not correct")
|
||||
else:
|
||||
pass
|
||||
if column_num != 0:
|
||||
for i in range(column_num, num_of_rows):
|
||||
ab[i, :] -= (
|
||||
ab[i, column_num - 1]
|
||||
/ ab[column_num - 1, column_num - 1]
|
||||
* ab[column_num - 1, :]
|
||||
)
|
||||
|
||||
# Upper triangular matrix
|
||||
for column_num in range(num_of_rows):
|
||||
for i in range(column_num, num_of_columns):
|
||||
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
|
||||
ab[[column_num, i]] = ab[[i, column_num]]
|
||||
if ab[column_num, column_num] == 0.0:
|
||||
raise ValueError("Matrix is not correct")
|
||||
else:
|
||||
pass
|
||||
if column_num != 0:
|
||||
for i in range(column_num, num_of_rows):
|
||||
ab[i, :] -= (
|
||||
ab[i, column_num - 1]
|
||||
/ ab[column_num - 1, column_num - 1]
|
||||
* ab[column_num - 1, :]
|
||||
)
|
||||
|
||||
# Find x vector (Back Substitution)
|
||||
for column_num in range(num_of_rows - 1, -1, -1):
|
||||
x = ab[column_num, -1] / ab[column_num, column_num]
|
||||
x_lst.insert(0, x)
|
||||
for i in range(column_num - 1, -1, -1):
|
||||
ab[i, -1] -= ab[i, column_num] * x
|
||||
|
||||
# Return the solution vector
|
||||
return np.asarray(x_lst)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from doctest import testmod
|
||||
|
||||
testmod()
|
||||
|
||||
example_matrix = np.array(
|
||||
[
|
||||
[5.0, -5.0, -3.0, 4.0, -11.0],
|
||||
[1.0, -4.0, 6.0, -4.0, -10.0],
|
||||
[-2.0, -5.0, 4.0, -5.0, -12.0],
|
||||
[-3.0, -3.0, 5.0, -5.0, 8.0],
|
||||
],
|
||||
dtype=float,
|
||||
)
|
||||
|
||||
print(f"Matrix:\n{example_matrix}")
|
||||
print(f"{solve_linear_system(example_matrix) = }")
|
Reference in New Issue
Block a user