mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-04 16:57:32 +08:00
Rename Project Euler directories and other dependent changes (#3300)
* Rename all Project Euler directories: Reason: The change was done to maintain consistency throughout the directory and to keep all directories in sorted order. Due to the above change, some config files had to be modified: 'problem_22` -> `problem_022` * Update scripts to pad zeroes in PE directories
This commit is contained in:
0
project_euler/problem_069/__init__.py
Normal file
0
project_euler/problem_069/__init__.py
Normal file
66
project_euler/problem_069/sol1.py
Normal file
66
project_euler/problem_069/sol1.py
Normal file
@ -0,0 +1,66 @@
|
||||
"""
|
||||
Totient maximum
|
||||
Problem 69: https://projecteuler.net/problem=69
|
||||
|
||||
Euler's Totient function, φ(n) [sometimes called the phi function],
|
||||
is used to determine the number of numbers less than n which are relatively prime to n.
|
||||
For example, as 1, 2, 4, 5, 7, and 8,
|
||||
are all less than nine and relatively prime to nine, φ(9)=6.
|
||||
|
||||
n Relatively Prime φ(n) n/φ(n)
|
||||
2 1 1 2
|
||||
3 1,2 2 1.5
|
||||
4 1,3 2 2
|
||||
5 1,2,3,4 4 1.25
|
||||
6 1,5 2 3
|
||||
7 1,2,3,4,5,6 6 1.1666...
|
||||
8 1,3,5,7 4 2
|
||||
9 1,2,4,5,7,8 6 1.5
|
||||
10 1,3,7,9 4 2.5
|
||||
|
||||
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
|
||||
|
||||
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 10 ** 6) -> int:
|
||||
"""
|
||||
Returns solution to problem.
|
||||
Algorithm:
|
||||
1. Precompute φ(k) for all natural k, k <= n using product formula (wikilink below)
|
||||
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula
|
||||
|
||||
2. Find k/φ(k) for all k ≤ n and return the k that attains maximum
|
||||
|
||||
>>> solution(10)
|
||||
6
|
||||
|
||||
>>> solution(100)
|
||||
30
|
||||
|
||||
>>> solution(9973)
|
||||
2310
|
||||
|
||||
"""
|
||||
|
||||
if n <= 0:
|
||||
raise ValueError("Please enter an integer greater than 0")
|
||||
|
||||
phi = list(range(n + 1))
|
||||
for number in range(2, n + 1):
|
||||
if phi[number] == number:
|
||||
phi[number] -= 1
|
||||
for multiple in range(number * 2, n + 1, number):
|
||||
phi[multiple] = (phi[multiple] // number) * (number - 1)
|
||||
|
||||
answer = 1
|
||||
for number in range(1, n + 1):
|
||||
if (answer / phi[answer]) < (number / phi[number]):
|
||||
answer = number
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution())
|
Reference in New Issue
Block a user