mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Rename Project Euler directories and other dependent changes (#3300)
* Rename all Project Euler directories: Reason: The change was done to maintain consistency throughout the directory and to keep all directories in sorted order. Due to the above change, some config files had to be modified: 'problem_22` -> `problem_022` * Update scripts to pad zeroes in PE directories
This commit is contained in:
0
project_euler/problem_009/__init__.py
Normal file
0
project_euler/problem_009/__init__.py
Normal file
69
project_euler/problem_009/sol1.py
Normal file
69
project_euler/problem_009/sol1.py
Normal file
@ -0,0 +1,69 @@
|
||||
"""
|
||||
Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
a^2 + b^2 = c^2
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
"""
|
||||
|
||||
|
||||
def solution() -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution()
|
||||
# 31875000
|
||||
"""
|
||||
for a in range(300):
|
||||
for b in range(400):
|
||||
for c in range(500):
|
||||
if a < b < c:
|
||||
if (a ** 2) + (b ** 2) == (c ** 2):
|
||||
if (a + b + c) == 1000:
|
||||
return a * b * c
|
||||
|
||||
|
||||
def solution_fast() -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution_fast()
|
||||
# 31875000
|
||||
"""
|
||||
for a in range(300):
|
||||
for b in range(400):
|
||||
c = 1000 - a - b
|
||||
if a < b < c and (a ** 2) + (b ** 2) == (c ** 2):
|
||||
return a * b * c
|
||||
|
||||
|
||||
def benchmark() -> None:
|
||||
"""
|
||||
Benchmark code comparing two different version function.
|
||||
"""
|
||||
import timeit
|
||||
|
||||
print(
|
||||
timeit.timeit("solution()", setup="from __main__ import solution", number=1000)
|
||||
)
|
||||
print(
|
||||
timeit.timeit(
|
||||
"solution_fast()", setup="from __main__ import solution_fast", number=1000
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark()
|
38
project_euler/problem_009/sol2.py
Normal file
38
project_euler/problem_009/sol2.py
Normal file
@ -0,0 +1,38 @@
|
||||
"""
|
||||
Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
a^2 + b^2 = c^2
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""
|
||||
Return the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = n
|
||||
|
||||
>>> solution(1000)
|
||||
31875000
|
||||
"""
|
||||
product = -1
|
||||
candidate = 0
|
||||
for a in range(1, n // 3):
|
||||
"""Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c"""
|
||||
b = (n * n - 2 * a * n) // (2 * n - 2 * a)
|
||||
c = n - a - b
|
||||
if c * c == (a * a + b * b):
|
||||
candidate = a * b * c
|
||||
if candidate >= product:
|
||||
product = candidate
|
||||
return product
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
36
project_euler/problem_009/sol3.py
Normal file
36
project_euler/problem_009/sol3.py
Normal file
@ -0,0 +1,36 @@
|
||||
"""
|
||||
Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
|
||||
a^2 + b^2 = c^2
|
||||
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
"""
|
||||
|
||||
|
||||
def solution() -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
|
||||
1. a**2 + b**2 = c**2
|
||||
2. a + b + c = 1000
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution()
|
||||
# 31875000
|
||||
"""
|
||||
return [
|
||||
a * b * (1000 - a - b)
|
||||
for a in range(1, 999)
|
||||
for b in range(a, 999)
|
||||
if (a * a + b * b == (1000 - a - b) ** 2)
|
||||
][0]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution())
|
Reference in New Issue
Block a user