Created problem_45 in project_euler and Speed Boost for problem_34/sol1.py (#2349)

* Create __init__.py

* Add files via upload

* Update sol1.py

* Update sol1.py

* Update project_euler/problem_45/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update sol1.py

* Update sol1.py

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update sol1.py

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update sol1.py

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Kushagra Bansal
2020-08-25 17:18:19 +05:30
committed by GitHub
parent 5cfc017ebb
commit 402ba7f49a
3 changed files with 63 additions and 38 deletions

View File

@ -4,37 +4,7 @@ Find the sum of all numbers which are equal to the sum of the factorial of their
Note: As 1! = 1 and 2! = 2 are not sums they are not included.
"""
def factorial(n: int) -> int:
"""Return the factorial of n.
>>> factorial(5)
120
>>> factorial(1)
1
>>> factorial(0)
1
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: n must be >= 0
>>> factorial(1.1)
Traceback (most recent call last):
...
ValueError: n must be exact integer
"""
if not n >= 0:
raise ValueError("n must be >= 0")
if int(n) != n:
raise ValueError("n must be exact integer")
if n + 1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
result *= factor
factor += 1
return result
from math import factorial
def sum_of_digit_factorial(n: int) -> int:
@ -45,7 +15,7 @@ def sum_of_digit_factorial(n: int) -> int:
>>> sum_of_digit_factorial(0)
1
"""
return sum(factorial(int(digit)) for digit in str(n))
return sum(factorial(int(char)) for char in str(n))
def compute() -> int:
@ -56,12 +26,9 @@ def compute() -> int:
>>> compute()
40730
"""
return sum(
num
for num in range(3, 7 * factorial(9) + 1)
if sum_of_digit_factorial(num) == num
)
limit = 7 * factorial(9) + 1
return sum(i for i in range(3, limit) if sum_of_digit_factorial(i) == i)
if __name__ == "__main__":
print(compute())
print(f"{compute()} = ")