Refactor bottom-up edit distance function to be class method (#7347)

* Refactor bottom-up function to be class method

* Add type hints

* Update convolve function namespace

* Remove depreciated np.float

* updating DIRECTORY.md

* updating DIRECTORY.md

* updating DIRECTORY.md

* updating DIRECTORY.md

* Renamed function for consistency

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Chris O <46587501+ChrisO345@users.noreply.github.com>
This commit is contained in:
Tianyi Zheng
2022-10-31 01:13:21 -04:00
committed by GitHub
parent f8958ebe20
commit 39e5bc5980
2 changed files with 74 additions and 63 deletions

View File

@ -19,74 +19,72 @@ class EditDistance:
"""
def __init__(self):
self.__prepare__()
self.word1 = ""
self.word2 = ""
self.dp = []
def __prepare__(self, n=0, m=0):
self.dp = [[-1 for y in range(0, m)] for x in range(0, n)]
def __solve_dp(self, x, y):
if x == -1:
return y + 1
elif y == -1:
return x + 1
elif self.dp[x][y] > -1:
return self.dp[x][y]
def __min_dist_top_down_dp(self, m: int, n: int) -> int:
if m == -1:
return n + 1
elif n == -1:
return m + 1
elif self.dp[m][n] > -1:
return self.dp[m][n]
else:
if self.a[x] == self.b[y]:
self.dp[x][y] = self.__solve_dp(x - 1, y - 1)
if self.word1[m] == self.word2[n]:
self.dp[m][n] = self.__min_dist_top_down_dp(m - 1, n - 1)
else:
self.dp[x][y] = 1 + min(
self.__solve_dp(x, y - 1),
self.__solve_dp(x - 1, y),
self.__solve_dp(x - 1, y - 1),
)
insert = self.__min_dist_top_down_dp(m, n - 1)
delete = self.__min_dist_top_down_dp(m - 1, n)
replace = self.__min_dist_top_down_dp(m - 1, n - 1)
self.dp[m][n] = 1 + min(insert, delete, replace)
return self.dp[x][y]
return self.dp[m][n]
def solve(self, a, b):
if isinstance(a, bytes):
a = a.decode("ascii")
def min_dist_top_down(self, word1: str, word2: str) -> int:
"""
>>> EditDistance().min_dist_top_down("intention", "execution")
5
>>> EditDistance().min_dist_top_down("intention", "")
9
>>> EditDistance().min_dist_top_down("", "")
0
"""
self.word1 = word1
self.word2 = word2
self.dp = [[-1 for _ in range(len(word2))] for _ in range(len(word1))]
if isinstance(b, bytes):
b = b.decode("ascii")
return self.__min_dist_top_down_dp(len(word1) - 1, len(word2) - 1)
self.a = str(a)
self.b = str(b)
def min_dist_bottom_up(self, word1: str, word2: str) -> int:
"""
>>> EditDistance().min_dist_bottom_up("intention", "execution")
5
>>> EditDistance().min_dist_bottom_up("intention", "")
9
>>> EditDistance().min_dist_bottom_up("", "")
0
"""
self.word1 = word1
self.word2 = word2
m = len(word1)
n = len(word2)
self.dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
self.__prepare__(len(a), len(b))
return self.__solve_dp(len(a) - 1, len(b) - 1)
def min_distance_bottom_up(word1: str, word2: str) -> int:
"""
>>> min_distance_bottom_up("intention", "execution")
5
>>> min_distance_bottom_up("intention", "")
9
>>> min_distance_bottom_up("", "")
0
"""
m = len(word1)
n = len(word2)
dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
for i in range(m + 1):
for j in range(n + 1):
if i == 0: # first string is empty
dp[i][j] = j
elif j == 0: # second string is empty
dp[i][j] = i
elif (
word1[i - 1] == word2[j - 1]
): # last character of both substing is equal
dp[i][j] = dp[i - 1][j - 1]
else:
insert = dp[i][j - 1]
delete = dp[i - 1][j]
replace = dp[i - 1][j - 1]
dp[i][j] = 1 + min(insert, delete, replace)
return dp[m][n]
for i in range(m + 1):
for j in range(n + 1):
if i == 0: # first string is empty
self.dp[i][j] = j
elif j == 0: # second string is empty
self.dp[i][j] = i
elif word1[i - 1] == word2[j - 1]: # last characters are equal
self.dp[i][j] = self.dp[i - 1][j - 1]
else:
insert = self.dp[i][j - 1]
delete = self.dp[i - 1][j]
replace = self.dp[i - 1][j - 1]
self.dp[i][j] = 1 + min(insert, delete, replace)
return self.dp[m][n]
if __name__ == "__main__":
@ -99,7 +97,7 @@ if __name__ == "__main__":
S2 = input("Enter the second string: ").strip()
print()
print(f"The minimum Edit Distance is: {solver.solve(S1, S2)}")
print(f"The minimum Edit Distance is: {min_distance_bottom_up(S1, S2)}")
print(f"The minimum edit distance is: {solver.min_dist_top_down(S1, S2)}")
print(f"The minimum edit distance is: {solver.min_dist_bottom_up(S1, S2)}")
print()
print("*************** End of Testing Edit Distance DP Algorithm ***************")