mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Fix sphinx/build_docs warnings for other (#12482)
* Fix sphinx/build_docs warnings for other * Fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -1,25 +1,26 @@
|
||||
"""
|
||||
developed by: markmelnic
|
||||
original repo: https://github.com/markmelnic/Scoring-Algorithm
|
||||
| developed by: markmelnic
|
||||
| original repo: https://github.com/markmelnic/Scoring-Algorithm
|
||||
|
||||
Analyse data using a range based percentual proximity algorithm
|
||||
and calculate the linear maximum likelihood estimation.
|
||||
The basic principle is that all values supplied will be broken
|
||||
down to a range from 0 to 1 and each column's score will be added
|
||||
down to a range from ``0`` to ``1`` and each column's score will be added
|
||||
up to get the total score.
|
||||
|
||||
==========
|
||||
Example for data of vehicles
|
||||
price|mileage|registration_year
|
||||
20k |60k |2012
|
||||
22k |50k |2011
|
||||
23k |90k |2015
|
||||
16k |210k |2010
|
||||
::
|
||||
|
||||
price|mileage|registration_year
|
||||
20k |60k |2012
|
||||
22k |50k |2011
|
||||
23k |90k |2015
|
||||
16k |210k |2010
|
||||
|
||||
We want the vehicle with the lowest price,
|
||||
lowest mileage but newest registration year.
|
||||
Thus the weights for each column are as follows:
|
||||
[0, 0, 1]
|
||||
``[0, 0, 1]``
|
||||
"""
|
||||
|
||||
|
||||
@ -97,10 +98,11 @@ def procentual_proximity(
|
||||
source_data: list[list[float]], weights: list[int]
|
||||
) -> list[list[float]]:
|
||||
"""
|
||||
weights - int list
|
||||
possible values - 0 / 1
|
||||
0 if lower values have higher weight in the data set
|
||||
1 if higher values have higher weight in the data set
|
||||
| `weights` - ``int`` list
|
||||
| possible values - ``0`` / ``1``
|
||||
|
||||
* ``0`` if lower values have higher weight in the data set
|
||||
* ``1`` if higher values have higher weight in the data set
|
||||
|
||||
>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
|
||||
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
|
||||
|
Reference in New Issue
Block a user