mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-19 19:03:02 +08:00
Added doctest and more explanation about Dijkstra execution. (#1014)
* Added doctest and more explanation about Dijkstra execution. * tests were not passing with python2 due to missing __init__.py file at number_theory folder * Removed the dot at the beginning of the imported modules names because 'python3 -m doctest -v data_structures/hashing/*.py' and 'python3 -m doctest -v data_structures/stacks/*.py' were failing not finding hash_table.py and stack.py modules. * Moved global code to main scope and added doctest for project euler problems 1 to 14. * Added test case for negative input. * Changed N variable to do not use end of line scape because in case there is a space after it the script will break making it much more error prone. * Added problems description and doctests to the ones that were missing. Limited line length to 79 and executed python black over all scripts. * Changed the way files are loaded to support pytest call. * Added __init__.py to problems to make them modules and allow pytest execution. * Added project_euler folder to test units execution * Changed 'os.path.split(os.path.realpath(__file__))' to 'os.path.dirname()'
This commit is contained in:

committed by
cclauss

parent
2fb3beeaf1
commit
267b5eff40
0
project_euler/problem_02/__init__.py
Normal file
0
project_euler/problem_02/__init__.py
Normal file
@ -1,24 +1,47 @@
|
||||
'''
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
|
||||
the first 10 terms will be:
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
'''
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
try:
|
||||
raw_input # Python 2
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
|
||||
n = int(raw_input().strip())
|
||||
i=1
|
||||
j=2
|
||||
sum=0
|
||||
while(j<=n):
|
||||
if j%2 == 0:
|
||||
sum+=j
|
||||
i , j = j, i+j
|
||||
print(sum)
|
||||
|
||||
def solution(n):
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
>>> solution(15)
|
||||
10
|
||||
>>> solution(2)
|
||||
2
|
||||
>>> solution(1)
|
||||
0
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
i = 1
|
||||
j = 2
|
||||
sum = 0
|
||||
while j <= n:
|
||||
if j % 2 == 0:
|
||||
sum += j
|
||||
i, j = j, i + j
|
||||
|
||||
return sum
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(raw_input().strip())))
|
||||
|
@ -1,15 +1,45 @@
|
||||
def fib(n):
|
||||
"""
|
||||
Returns a list of all the even terms in the Fibonacci sequence that are less than n.
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
|
||||
|
||||
def solution(n):
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
|
||||
>>> solution(10)
|
||||
[2, 8]
|
||||
>>> solution(15)
|
||||
[2, 8]
|
||||
>>> solution(2)
|
||||
[2]
|
||||
>>> solution(1)
|
||||
[]
|
||||
>>> solution(34)
|
||||
[2, 8, 34]
|
||||
"""
|
||||
ls = []
|
||||
a, b = 0, 1
|
||||
while b < n:
|
||||
while b <= n:
|
||||
if b % 2 == 0:
|
||||
ls.append(b)
|
||||
a, b = b, a+b
|
||||
a, b = b, a + b
|
||||
return ls
|
||||
|
||||
if __name__ == '__main__':
|
||||
n = int(input("Enter max number: ").strip())
|
||||
print(sum(fib(n)))
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(raw_input().strip())))
|
||||
|
@ -1,18 +1,47 @@
|
||||
'''
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two terms.
|
||||
0,1,1,2,3,5,8,13,21,34,55,89,..
|
||||
Every third term from 0 is even So using this I have written a simple code
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
'''
|
||||
"""Python 3"""
|
||||
n = int(input())
|
||||
a=0
|
||||
b=2
|
||||
count=0
|
||||
while 4*b+a<n:
|
||||
a, b = b, 4*b+a
|
||||
count+= a
|
||||
print(count+b)
|
||||
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous
|
||||
two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
|
||||
|
||||
def solution(n):
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
>>> solution(15)
|
||||
10
|
||||
>>> solution(2)
|
||||
2
|
||||
>>> solution(1)
|
||||
0
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
if n <= 1:
|
||||
return 0
|
||||
a = 0
|
||||
b = 2
|
||||
count = 0
|
||||
while 4 * b + a <= n:
|
||||
a, b = b, 4 * b + a
|
||||
count += a
|
||||
return count + b
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(raw_input().strip())))
|
||||
|
@ -1,13 +1,47 @@
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
import math
|
||||
from decimal import *
|
||||
|
||||
getcontext().prec = 100
|
||||
phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2)
|
||||
try:
|
||||
raw_input # Python 2
|
||||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
|
||||
n = Decimal(int(input()) - 1)
|
||||
|
||||
index = (math.floor(math.log(n * (phi + 2), phi) - 1) // 3) * 3 + 2
|
||||
num = round(phi ** Decimal(index + 1)) / (phi + 2)
|
||||
sum = num // 2
|
||||
def solution(n):
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
>>> solution(15)
|
||||
10
|
||||
>>> solution(2)
|
||||
2
|
||||
>>> solution(1)
|
||||
0
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
getcontext().prec = 100
|
||||
phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2)
|
||||
|
||||
print(int(sum))
|
||||
index = (math.floor(math.log(n * (phi + 2), phi) - 1) // 3) * 3 + 2
|
||||
num = Decimal(round(phi ** Decimal(index + 1))) / (phi + 2)
|
||||
sum = num // 2
|
||||
return int(sum)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(raw_input().strip())))
|
||||
|
Reference in New Issue
Block a user