fix(mypy): Fix annotations for 13 cipher algorithms (#4278)

* Initial fix for mypy errors in some cipher algorithms

* fix(mypy): Update type hints

* fix(mypy): Update type hints for enigma_machine2.py

* Update as per the suggestion

Co-authored-by: Christian Clauss <cclauss@me.com>

Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Dhruv Manilawala
2021-03-22 12:29:51 +05:30
committed by GitHub
parent 99a42f2b58
commit 14bcb580d5
13 changed files with 101 additions and 89 deletions

View File

@ -2,24 +2,18 @@ import os
import random
import sys
from . import cryptomath_module as cryptoMath
from . import rabin_miller as rabinMiller
from . import cryptomath_module as cryptomath
from . import rabin_miller
min_primitive_root = 3
def main():
print("Making key files...")
makeKeyFiles("elgamal", 2048)
print("Key files generation successful")
# I have written my code naively same as definition of primitive root
# however every time I run this program, memory exceeded...
# so I used 4.80 Algorithm in
# Handbook of Applied Cryptography(CRC Press, ISBN : 0-8493-8523-7, October 1996)
# and it seems to run nicely!
def primitiveRoot(p_val: int) -> int:
def primitive_root(p_val: int) -> int:
print("Generating primitive root of p")
while True:
g = random.randrange(3, p_val)
@ -30,20 +24,20 @@ def primitiveRoot(p_val: int) -> int:
return g
def generateKey(keySize: int) -> ((int, int, int, int), (int, int)):
def generate_key(key_size: int) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print("Generating prime p...")
p = rabinMiller.generateLargePrime(keySize) # select large prime number.
e_1 = primitiveRoot(p) # one primitive root on modulo p.
p = rabin_miller.generateLargePrime(key_size) # select large prime number.
e_1 = primitive_root(p) # one primitive root on modulo p.
d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety.
e_2 = cryptoMath.findModInverse(pow(e_1, d, p), p)
e_2 = cryptomath.find_mod_inverse(pow(e_1, d, p), p)
publicKey = (keySize, e_1, e_2, p)
privateKey = (keySize, d)
public_key = (key_size, e_1, e_2, p)
private_key = (key_size, d)
return publicKey, privateKey
return public_key, private_key
def makeKeyFiles(name: str, keySize: int):
def make_key_files(name: str, keySize: int) -> None:
if os.path.exists("%s_pubkey.txt" % name) or os.path.exists(
"%s_privkey.txt" % name
):
@ -55,7 +49,7 @@ def makeKeyFiles(name: str, keySize: int):
)
sys.exit()
publicKey, privateKey = generateKey(keySize)
publicKey, privateKey = generate_key(keySize)
print("\nWriting public key to file %s_pubkey.txt..." % name)
with open("%s_pubkey.txt" % name, "w") as fo:
fo.write(
@ -67,5 +61,11 @@ def makeKeyFiles(name: str, keySize: int):
fo.write("%d,%d" % (privateKey[0], privateKey[1]))
def main() -> None:
print("Making key files...")
make_key_files("elgamal", 2048)
print("Key files generation successful")
if __name__ == "__main__":
main()