mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 17:34:49 +08:00
@ -1,21 +1,23 @@
|
||||
# Modular Division :
|
||||
# An efficient algorithm for dividing b by a modulo n.
|
||||
|
||||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should
|
||||
# return an integer x such that 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)).
|
||||
|
||||
# Theorem:
|
||||
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1
|
||||
|
||||
|
||||
# This find x = b*a^(-1) mod n
|
||||
# Uses ExtendedEuclid to find the inverse of a
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
def modular_division(a: int, b: int, n: int) -> int:
|
||||
"""
|
||||
Modular Division :
|
||||
An efficient algorithm for dividing b by a modulo n.
|
||||
|
||||
GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
|
||||
|
||||
Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should
|
||||
return an integer x such that 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)).
|
||||
|
||||
Theorem:
|
||||
a has a multiplicative inverse modulo n iff gcd(a,n) = 1
|
||||
|
||||
|
||||
This find x = b*a^(-1) mod n
|
||||
Uses ExtendedEuclid to find the inverse of a
|
||||
|
||||
>>> modular_division(4,8,5)
|
||||
2
|
||||
|
||||
@ -32,9 +34,10 @@ def modular_division(a: int, b: int, n: int) -> int:
|
||||
return x
|
||||
|
||||
|
||||
# This function find the inverses of a i.e., a^(-1)
|
||||
def invert_modulo(a: int, n: int) -> int:
|
||||
"""
|
||||
This function find the inverses of a i.e., a^(-1)
|
||||
|
||||
>>> invert_modulo(2, 5)
|
||||
3
|
||||
|
||||
@ -50,9 +53,11 @@ def invert_modulo(a: int, n: int) -> int:
|
||||
|
||||
# ------------------ Finding Modular division using invert_modulo -------------------
|
||||
|
||||
# This function used the above inversion of a to find x = (b*a^(-1))mod n
|
||||
|
||||
def modular_division2(a: int, b: int, n: int) -> int:
|
||||
"""
|
||||
This function used the above inversion of a to find x = (b*a^(-1))mod n
|
||||
|
||||
>>> modular_division2(4,8,5)
|
||||
2
|
||||
|
||||
@ -68,17 +73,15 @@ def modular_division2(a: int, b: int, n: int) -> int:
|
||||
return x
|
||||
|
||||
|
||||
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x
|
||||
# and y, then d = gcd(a,b)
|
||||
|
||||
|
||||
def extended_gcd(a: int, b: int) -> (int, int, int):
|
||||
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
|
||||
"""
|
||||
>>> extended_gcd(10, 6)
|
||||
(2, -1, 2)
|
||||
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x
|
||||
and y, then d = gcd(a,b)
|
||||
>>> extended_gcd(10, 6)
|
||||
(2, -1, 2)
|
||||
|
||||
>>> extended_gcd(7, 5)
|
||||
(1, -2, 3)
|
||||
>>> extended_gcd(7, 5)
|
||||
(1, -2, 3)
|
||||
|
||||
** extended_gcd function is used when d = gcd(a,b) is required in output
|
||||
|
||||
@ -98,9 +101,9 @@ def extended_gcd(a: int, b: int) -> (int, int, int):
|
||||
return (d, x, y)
|
||||
|
||||
|
||||
# Extended Euclid
|
||||
def extended_euclid(a: int, b: int) -> (int, int):
|
||||
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
|
||||
"""
|
||||
Extended Euclid
|
||||
>>> extended_euclid(10, 6)
|
||||
(-1, 2)
|
||||
|
||||
@ -115,12 +118,11 @@ def extended_euclid(a: int, b: int) -> (int, int):
|
||||
return (y, x - k * y)
|
||||
|
||||
|
||||
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
|
||||
# Euclid's Algorithm
|
||||
|
||||
|
||||
def greatest_common_divisor(a: int, b: int) -> int:
|
||||
"""
|
||||
Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
|
||||
Euclid's Algorithm
|
||||
|
||||
>>> greatest_common_divisor(7,5)
|
||||
1
|
||||
|
||||
|
Reference in New Issue
Block a user