.vs/ directory, matrix_multiplication_addition file and binary tree directory (#894)

* Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory

* Removed .vs/ folder per #893

* Rename matrix_multiplication_addition.py to matrix_operation.py
This commit is contained in:
Hector S
2019-06-11 07:24:53 -04:00
committed by John Law
parent 066f37402d
commit 05e5172093
9 changed files with 8 additions and 7 deletions

View File

@ -0,0 +1,255 @@
# -*- coding: utf-8 -*-
'''
An auto-balanced binary tree!
'''
import math
import random
class my_queue:
def __init__(self):
self.data = []
self.head = 0
self.tail = 0
def isEmpty(self):
return self.head == self.tail
def push(self,data):
self.data.append(data)
self.tail = self.tail + 1
def pop(self):
ret = self.data[self.head]
self.head = self.head + 1
return ret
def count(self):
return self.tail - self.head
def print(self):
print(self.data)
print("**************")
print(self.data[self.head:self.tail])
class my_node:
def __init__(self,data):
self.data = data
self.left = None
self.right = None
self.height = 1
def getdata(self):
return self.data
def getleft(self):
return self.left
def getright(self):
return self.right
def getheight(self):
return self.height
def setdata(self,data):
self.data = data
return
def setleft(self,node):
self.left = node
return
def setright(self,node):
self.right = node
return
def setheight(self,height):
self.height = height
return
def getheight(node):
if node is None:
return 0
return node.getheight()
def my_max(a,b):
if a > b:
return a
return b
def leftrotation(node):
r'''
A B
/ \ / \
B C Bl A
/ \ --> / / \
Bl Br UB Br C
/
UB
UB = unbalanced node
'''
print("left rotation node:",node.getdata())
ret = node.getleft()
node.setleft(ret.getright())
ret.setright(node)
h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1
node.setheight(h1)
h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1
ret.setheight(h2)
return ret
def rightrotation(node):
'''
a mirror symmetry rotation of the leftrotation
'''
print("right rotation node:",node.getdata())
ret = node.getright()
node.setright(ret.getleft())
ret.setleft(node)
h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1
node.setheight(h1)
h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1
ret.setheight(h2)
return ret
def rlrotation(node):
r'''
A A Br
/ \ / \ / \
B C RR Br C LR B A
/ \ --> / \ --> / / \
Bl Br B UB Bl UB C
\ /
UB Bl
RR = rightrotation LR = leftrotation
'''
node.setleft(rightrotation(node.getleft()))
return leftrotation(node)
def lrrotation(node):
node.setright(leftrotation(node.getright()))
return rightrotation(node)
def insert_node(node,data):
if node is None:
return my_node(data)
if data < node.getdata():
node.setleft(insert_node(node.getleft(),data))
if getheight(node.getleft()) - getheight(node.getright()) == 2: #an unbalance detected
if data < node.getleft().getdata(): #new node is the left child of the left child
node = leftrotation(node)
else:
node = rlrotation(node) #new node is the right child of the left child
else:
node.setright(insert_node(node.getright(),data))
if getheight(node.getright()) - getheight(node.getleft()) == 2:
if data < node.getright().getdata():
node = lrrotation(node)
else:
node = rightrotation(node)
h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1
node.setheight(h1)
return node
def getRightMost(root):
while root.getright() is not None:
root = root.getright()
return root.getdata()
def getLeftMost(root):
while root.getleft() is not None:
root = root.getleft()
return root.getdata()
def del_node(root,data):
if root.getdata() == data:
if root.getleft() is not None and root.getright() is not None:
temp_data = getLeftMost(root.getright())
root.setdata(temp_data)
root.setright(del_node(root.getright(),temp_data))
elif root.getleft() is not None:
root = root.getleft()
else:
root = root.getright()
elif root.getdata() > data:
if root.getleft() is None:
print("No such data")
return root
else:
root.setleft(del_node(root.getleft(),data))
elif root.getdata() < data:
if root.getright() is None:
return root
else:
root.setright(del_node(root.getright(),data))
if root is None:
return root
if getheight(root.getright()) - getheight(root.getleft()) == 2:
if getheight(root.getright().getright()) > getheight(root.getright().getleft()):
root = rightrotation(root)
else:
root = lrrotation(root)
elif getheight(root.getright()) - getheight(root.getleft()) == -2:
if getheight(root.getleft().getleft()) > getheight(root.getleft().getright()):
root = leftrotation(root)
else:
root = rlrotation(root)
height = my_max(getheight(root.getright()),getheight(root.getleft())) + 1
root.setheight(height)
return root
class AVLtree:
def __init__(self):
self.root = None
def getheight(self):
# print("yyy")
return getheight(self.root)
def insert(self,data):
print("insert:"+str(data))
self.root = insert_node(self.root,data)
def del_node(self,data):
print("delete:"+str(data))
if self.root is None:
print("Tree is empty!")
return
self.root = del_node(self.root,data)
def traversale(self): #a level traversale, gives a more intuitive look on the tree
q = my_queue()
q.push(self.root)
layer = self.getheight()
if layer == 0:
return
cnt = 0
while not q.isEmpty():
node = q.pop()
space = " "*int(math.pow(2,layer-1))
print(space,end = "")
if node is None:
print("*",end = "")
q.push(None)
q.push(None)
else:
print(node.getdata(),end = "")
q.push(node.getleft())
q.push(node.getright())
print(space,end = "")
cnt = cnt + 1
for i in range(100):
if cnt == math.pow(2,i) - 1:
layer = layer -1
if layer == 0:
print()
print("*************************************")
return
print()
break
print()
print("*************************************")
return
def test(self):
getheight(None)
print("****")
self.getheight()
if __name__ == "__main__":
t = AVLtree()
t.traversale()
l = list(range(10))
random.shuffle(l)
for i in l:
t.insert(i)
t.traversale()
random.shuffle(l)
for i in l:
t.del_node(i)
t.traversale()

View File

@ -0,0 +1,258 @@
'''
A binary search Tree
'''
from __future__ import print_function
class Node:
def __init__(self, label, parent):
self.label = label
self.left = None
self.right = None
#Added in order to delete a node easier
self.parent = parent
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
new_node = Node(label, None)
# If Tree is empty
if self.empty():
self.root = new_node
else:
#If Tree is not empty
curr_node = self.root
#While we don't get to a leaf
while curr_node is not None:
#We keep reference of the parent node
parent_node = curr_node
#If node label is less than current node
if new_node.getLabel() < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
#We insert the new node in a leaf
if new_node.getLabel() < parent_node.getLabel():
parent_node.setLeft(new_node)
else:
parent_node.setRight(new_node)
#Set parent to the new node
new_node.setParent(parent_node)
def delete(self, label):
if (not self.empty()):
#Look for the node with that label
node = self.getNode(label)
#If the node exists
if(node is not None):
#If it has no children
if(node.getLeft() is None and node.getRight() is None):
self.__reassignNodes(node, None)
node = None
#Has only right children
elif(node.getLeft() is None and node.getRight() is not None):
self.__reassignNodes(node, node.getRight())
#Has only left children
elif(node.getLeft() is not None and node.getRight() is None):
self.__reassignNodes(node, node.getLeft())
#Has two children
else:
#Gets the max value of the left branch
tmpNode = self.getMax(node.getLeft())
#Deletes the tmpNode
self.delete(tmpNode.getLabel())
#Assigns the value to the node to delete and keesp tree structure
node.setLabel(tmpNode.getLabel())
def getNode(self, label):
curr_node = None
#If the tree is not empty
if(not self.empty()):
#Get tree root
curr_node = self.getRoot()
#While we don't find the node we look for
#I am using lazy evaluation here to avoid NoneType Attribute error
while curr_node is not None and curr_node.getLabel() is not label:
#If node label is less than current node
if label < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
return curr_node
def getMax(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the right branch
curr_node = self.getRoot()
if(not self.empty()):
while(curr_node.getRight() is not None):
curr_node = curr_node.getRight()
return curr_node
def getMin(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the left branch
curr_node = self.getRoot()
if(not self.empty()):
curr_node = self.getRoot()
while(curr_node.getLeft() is not None):
curr_node = curr_node.getLeft()
return curr_node
def empty(self):
if self.root is None:
return True
return False
def __InOrderTraversal(self, curr_node):
nodeList = []
if curr_node is not None:
nodeList.insert(0, curr_node)
nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
return nodeList
def getRoot(self):
return self.root
def __isRightChildren(self, node):
if(node == node.getParent().getRight()):
return True
return False
def __reassignNodes(self, node, newChildren):
if(newChildren is not None):
newChildren.setParent(node.getParent())
if(node.getParent() is not None):
#If it is the Right Children
if(self.__isRightChildren(node)):
node.getParent().setRight(newChildren)
else:
#Else it is the left children
node.getParent().setLeft(newChildren)
#This function traversal the tree. By default it returns an
#In order traversal list. You can pass a function to traversal
#The tree as needed by client code
def traversalTree(self, traversalFunction = None, root = None):
if(traversalFunction is None):
#Returns a list of nodes in preOrder by default
return self.__InOrderTraversal(self.root)
else:
#Returns a list of nodes in the order that the users wants to
return traversalFunction(self.root)
#Returns an string of all the nodes labels in the list
#In Order Traversal
def __str__(self):
list = self.__InOrderTraversal(self.root)
str = ""
for x in list:
str = str + " " + x.getLabel().__str__()
return str
def InPreOrder(curr_node):
nodeList = []
if curr_node is not None:
nodeList = nodeList + InPreOrder(curr_node.getLeft())
nodeList.insert(0, curr_node.getLabel())
nodeList = nodeList + InPreOrder(curr_node.getRight())
return nodeList
def testBinarySearchTree():
r'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
r'''
Example After Deletion
7
/ \
1 4
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(6)
t.insert(1)
t.insert(10)
t.insert(14)
t.insert(13)
t.insert(4)
t.insert(7)
#Prints all the elements of the list in order traversal
print(t.__str__())
if(t.getNode(6) is not None):
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if(t.getNode(-1) is not None):
print("The label -1 exists")
else:
print("The label -1 doesn't exist")
if(not t.empty()):
print(("Max Value: ", t.getMax().getLabel()))
print(("Min Value: ", t.getMin().getLabel()))
t.delete(13)
t.delete(10)
t.delete(8)
t.delete(3)
t.delete(6)
t.delete(14)
#Gets all the elements of the tree In pre order
#And it prints them
list = t.traversalTree(InPreOrder, t.root)
for x in list:
print(x)
if __name__ == "__main__":
testBinarySearchTree()

View File

@ -0,0 +1,29 @@
from __future__ import print_function
class FenwickTree:
def __init__(self, SIZE): # create fenwick tree with size SIZE
self.Size = SIZE
self.ft = [0 for i in range (0,SIZE)]
def update(self, i, val): # update data (adding) in index i in O(lg N)
while (i < self.Size):
self.ft[i] += val
i += i & (-i)
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
ret = 0
while (i > 0):
ret += self.ft[i]
i -= i & (-i)
return ret
if __name__ == '__main__':
f = FenwickTree(100)
f.update(1,20)
f.update(4,4)
print (f.query(1))
print (f.query(3))
print (f.query(4))
f.update(2,-5)
print (f.query(1))
print (f.query(3))

View File

@ -0,0 +1,91 @@
from __future__ import print_function
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l!=r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return True
if l >= a and r <= b :
self.st[idx] = val
if l!=r:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
# query with O(lg N)
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -0,0 +1,71 @@
from __future__ import print_function
import math
class SegmentTree:
def __init__(self, A):
self.N = len(A)
self.st = [0] * (4 * self.N) # approximate the overall size of segment tree with array N
self.build(1, 0, self.N - 1)
def left(self, idx):
return idx * 2
def right(self, idx):
return idx * 2 + 1
def build(self, idx, l, r):
if l == r:
self.st[idx] = A[l]
else:
mid = (l + r) // 2
self.build(self.left(idx), l, mid)
self.build(self.right(idx), mid + 1, r)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
def update(self, a, b, val):
return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val)
def update_recursive(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if r < a or l > b:
return True
if l == r :
self.st[idx] = val
return True
mid = (l+r)//2
self.update_recursive(self.left(idx), l, mid, a, b, val)
self.update_recursive(self.right(idx), mid+1, r, a, b, val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
def query(self, a, b):
return self.query_recursive(1, 0, self.N - 1, a - 1, b - 1)
def query_recursive(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query_recursive(self.left(idx), l, mid, a, b)
q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b)
return max(q1, q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(A)
print (segt.query(4, 6))
print (segt.query(7, 11))
print (segt.query(7, 12))
segt.update(1,3,111)
print (segt.query(1, 15))
segt.update(7,8,235)
segt.showData()

View File

@ -0,0 +1,129 @@
from random import random
from typing import Tuple
class Node:
"""
Treap's node
Treap is a binary tree by key and heap by priority
"""
def __init__(self, key: int):
self.key = key
self.prior = random()
self.l = None
self.r = None
def split(root: Node, key: int) -> Tuple[Node, Node]:
"""
We split current tree into 2 trees with key:
Left tree contains all keys less than split key.
Right tree contains all keys greater or equal, than split key
"""
if root is None: # None tree is split into 2 Nones
return (None, None)
if root.key >= key:
"""
Right tree's root will be current node.
Now we split(with the same key) current node's left son
Left tree: left part of that split
Right tree's left son: right part of that split
"""
l, root.l = split(root.l, key)
return (l, root)
else:
"""
Just symmetric to previous case
"""
root.r, r = split(root.r, key)
return (root, r)
def merge(left: Node, right: Node) -> Node:
"""
We merge 2 trees into one.
Note: all left tree's keys must be less than all right tree's
"""
if (not left) or (not right):
"""
If one node is None, return the other
"""
return left or right
if left.key > right.key:
"""
Left will be root because it has more priority
Now we need to merge left's right son and right tree
"""
left.r = merge(left.r, right)
return left
else:
"""
Symmetric as well
"""
right.l = merge(left, right.l)
return right
def insert(root: Node, key: int) -> Node:
"""
Insert element
Split current tree with a key into l, r,
Insert new node into the middle
Merge l, node, r into root
"""
node = Node(key)
l, r = split(root, key)
root = merge(l, node)
root = merge(root, r)
return root
def erase(root: Node, key: int) -> Node:
"""
Erase element
Split all nodes with keys less into l,
Split all nodes with keys greater into r.
Merge l, r
"""
l, r = split(root, key)
_, r = split(r, key + 1)
return merge(l, r)
def node_print(root: Node):
"""
Just recursive print of a tree
"""
if not root:
return
node_print(root.l)
print(root.key, end=" ")
node_print(root.r)
def interactTreap():
"""
Commands:
+ key to add key into treap
- key to erase all nodes with key
After each command, program prints treap
"""
root = None
while True:
cmd = input().split()
cmd[1] = int(cmd[1])
if cmd[0] == "+":
root = insert(root, cmd[1])
elif cmd[0] == "-":
root = erase(root, cmd[1])
else:
print("Unknown command")
node_print(root)
if __name__ == "__main__":
interactTreap()