# [528. Random Pick with Weight](https://leetcode.com/problems/random-pick-with-weight/) ## 题目 Given an array `w` of positive integers, where `w[i]` describes the weight of index `i`, write a function `pickIndex` which randomly picks an index in proportion to its weight. **Note**: 1. `1 <= w.length <= 10000` 2. `1 <= w[i] <= 10^5` 3. `pickIndex` will be called at most `10000` times. **Example 1**: Input: ["Solution","pickIndex"] [[[1]],[]] Output: [null,0] **Example 2**: Input: ["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"] [[[1,3]],[],[],[],[],[]] Output: [null,0,1,1,1,0] **Explanation of Input Syntax:** The input is two lists: the subroutines called and their arguments. `Solution`'s constructor has one argument, the array `w`. `pickIndex` has no arguments. Arguments are always wrapped with a list, even if there aren't any. ## 题目大意 给定一个正整数数组 w ,其中 w[i] 代表位置 i 的权重,请写一个函数 pickIndex ,它可以随机地获取位置 i,选取位置 i 的概率与 w[i] 成正比。 说明: 1. 1 <= w.length <= 10000 2. 1 <= w[i] <= 10^5 3. pickIndex 将被调用不超过 10000 次 输入语法说明: 输入是两个列表:调用成员函数名和调用的参数。Solution 的构造函数有一个参数,即数组 w。pickIndex 没有参数。输入参数是一个列表,即使参数为空,也会输入一个 [] 空列表。 ## 解题思路 - 给出一个数组,每个元素值代表该下标的权重值,`pickIndex()` 随机取一个位置 i,这个位置出现的概率和该元素值成正比。 - 由于涉及到了权重的问题,这一题可以先考虑用前缀和处理权重。在 `[0,prefixSum)` 区间内随机选一个整数 `x`,下标 `i` 是满足 `x< prefixSum[i]` 条件的最小下标,求这个下标 `i` 即是最终解。二分搜索查找下标 `i` 。对于某些下标 `i`,所有满足 `prefixSum[i] - w[i] ≤ v < prefixSum[i]` 的整数 `v` 都映射到这个下标。因此,所有的下标都与下标权重成比例。 - 时间复杂度:预处理的时间复杂度是 O(n),`pickIndex()` 的时间复杂度是 O(log n)。空间复杂度 O(n)。 ## 代码 ```go package leetcode import ( "math/rand" ) // Solution528 define type Solution528 struct { prefixSum []int } // Constructor528 define func Constructor528(w []int) Solution528 { prefixSum := make([]int, len(w)) for i, e := range w { if i == 0 { prefixSum[i] = e continue } prefixSum[i] = prefixSum[i-1] + e } return Solution528{prefixSum: prefixSum} } // PickIndex define func (so *Solution528) PickIndex() int { n := rand.Intn(so.prefixSum[len(so.prefixSum)-1]) + 1 low, high := 0, len(so.prefixSum)-1 for low < high { mid := low + (high-low)>>1 if so.prefixSum[mid] == n { return mid } else if so.prefixSum[mid] < n { low = mid + 1 } else { high = mid } } return low } /** * Your Solution object will be instantiated and called as such: * obj := Constructor(w); * param_1 := obj.PickIndex(); */ ```