# [84. Largest Rectangle in Histogram](https://leetcode.com/problems/largest-rectangle-in-histogram/) ## 题目 Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram. ![](https://assets.leetcode.com/uploads/2018/10/12/histogram.png) Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]. ![](https://assets.leetcode.com/uploads/2018/10/12/histogram_area.png) The largest rectangle is shown in the shaded area, which has area = 10 unit. **Example**: ``` Input: [2,1,5,6,2,3] Output: 10 ``` ## 题目大意 给出每个直方图的高度,要求在这些直方图之中找到面积最大的矩形,输出矩形的面积。 ## 解题思路 用单调栈依次保存直方图的高度下标,一旦出现高度比栈顶元素小的情况就取出栈顶元素,单独计算一下这个栈顶元素的矩形的高度。然后停在这里(外层循环中的 i--,再 ++,就相当于停在这里了),继续取出当前最大栈顶的前一个元素,即连续弹出 2 个最大的,以稍小的一个作为矩形的边,宽就是 2 计算面积…………如果停在这里的下标代表的高度一直比栈里面的元素小,就一直弹出,取出最后一个比当前下标大的高度作为矩形的边。宽就是最后一个比当前下标大的高度和当前下标 i 的差值。计算出面积以后不断的更新 maxArea 即可。 ## 代码 ```go package leetcode import "fmt" func largestRectangleArea(heights []int) int { maxArea, stack, height := 0, []int{}, 0 for i := 0; i <= len(heights); i++ { if i == len(heights) { height = 0 } else { height = heights[i] } if len(stack) == 0 || height >= heights[stack[len(stack)-1]] { stack = append(stack, i) } else { tmp := stack[len(stack)-1] fmt.Printf("1. tmp = %v stack = %v\n", tmp, stack) stack = stack[:len(stack)-1] length := 0 if len(stack) == 0 { length = i } else { length = i - 1 - stack[len(stack)-1] fmt.Printf("2. length = %v stack = %v i = %v\n", length, stack, i) } maxArea = max(maxArea, heights[tmp]*length) fmt.Printf("3. maxArea = %v heights[tmp]*length = %v\n", maxArea, heights[tmp]*length) i-- } } return maxArea } ```