# [62. Unique Paths](https://leetcode.com/problems/unique-paths/) ## 题目 A robot is located at the top-left corner of a *m* x *n* grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). How many possible unique paths are there? ![](https://assets.leetcode.com/uploads/2018/10/22/robot_maze.png) Above is a 7 x 3 grid. How many possible unique paths are there? **Note**: *m* and *n* will be at most 100. **Example 1**: Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right **Example 2**: Input: m = 7, n = 3 Output: 28 ## 题目大意 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径? ## 解题思路 - 这是一道简单的 DP 题。输出地图上从左上角走到右下角的走法数。 - 由于机器人只能向右走和向下走,所以地图的第一行和第一列的走法数都是 1,地图中任意一点的走法数是 `dp[i][j] = dp[i-1][j] + dp[i][j-1]` ## 代码 ```go package leetcode func uniquePaths(m int, n int) int { dp := make([][]int, n) for i := 0; i < n; i++ { dp[i] = make([]int, m) } for i := 0; i < m; i++ { dp[0][i] = 1 } for i := 0; i < n; i++ { dp[i][0] = 1 } for i := 1; i < n; i++ { for j := 1; j < m; j++ { dp[i][j] = dp[i-1][j] + dp[i][j-1] } } return dp[n-1][m-1] } ```