# [875. Koko Eating Bananas](https://leetcode.com/problems/walking-robot-simulation/) ## 题目 A robot on an infinite XY-plane starts at point `(0, 0)` and faces north. The robot can receive one of three possible types of `commands`: - `-2`: turn left `90` degrees, - `-1`: turn right `90` degrees, or - `1 <= k <= 9`: move forward `k` units. Some of the grid squares are `obstacles`. The `ith` obstacle is at grid point `obstacles[i] = (xi, yi)`. If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.) Return *the maximum Euclidean distance that the robot will be from the origin **squared** (i.e. if the distance is* `5`*, return* `25`*)*. **Note:** - North means +Y direction. - East means +X direction. - South means -Y direction. - West means -X direction. **Example 1:** ``` Input: commands = [4,-1,3], obstacles = [] Output: 25 Explanation: The robot starts at (0, 0): 1. Move north 4 units to (0, 4). 2. Turn right. 3. Move east 3 units to (3, 4). The furthest point away from the origin is (3, 4), which is 32 + 42 = 25 units away. ``` **Example 2:** ``` Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]] Output: 65 Explanation: The robot starts at (0, 0): 1. Move north 4 units to (0, 4). 2. Turn right. 3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4). 4. Turn left. 5. Move north 4 units to (1, 8). The furthest point away from the origin is (1, 8), which is 12 + 82 = 65 units away. ``` **Constraints:** - `1 <= commands.length <= 104` - `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`. - `0 <= obstacles.length <= 104` - `-3 * 104 <= xi, yi <= 3 * 104` - The answer is guaranteed to be less than `231`. ## 题目大意 机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands : -2 :向左转 90 度 -1 :向右转 90 度 1 <= x <= 9 :向前移动 x 个单位长度 在网格上有一些格子被视为障碍物 obstacles 。第 i 个障碍物位于网格点 obstacles[i] = (xi, yi) 。 机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续尝试进行该路线的其余部分。 返回从原点到机器人所有经过的路径点(坐标为整数)的最大欧式距离的平方。(即,如果距离为 5 ,则返回 25 ) 示例 1: 输入:commands = [4,-1,3], obstacles = [] 输出:25 解释: 机器人开始位于 (0, 0): 1. 向北移动 4 个单位,到达 (0, 4) 2. 右转 3. 向东移动 3 个单位,到达 (3, 4) 距离原点最远的是 (3, 4) ,距离为 32 + 42 = 25 示例 2: 输入:commands = [4,-1,4,-2,4], obstacles = [[2,4]] 输出:65 解释:机器人开始位于 (0, 0): 1. 向北移动 4 个单位,到达 (0, 4) 2. 右转 3. 向东移动 1 个单位,然后被位于 (2, 4) 的障碍物阻挡,机器人停在 (1, 4) 4. 左转 5. 向北走 4 个单位,到达 (1, 8) 距离原点最远的是 (1, 8) ,距离为 12 + 82 = 65 提示: - `1 <= commands.length <= 104` - `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`. - `0 <= obstacles.length <= 104` - `-3 * 104 <= xi, yi <= 3 * 104` - The answer is guaranteed to be less than `231`. ## 解题思路 这个题的难点在于,怎么用编程语言去描述机器人的行为 可以用以下数据结构表达机器人的行为: ```go direct:= 0 // direct表示机器人移动方向:0 1 2 3 4 (北东南西),默认朝北 x, y := 0, 0 // 表示当前机器人所在横纵坐标位置,默认为(0,0) directX := []int{0, 1, 0, -1} directY := []int{1, 0, -1, 0} // 组合directX directY和direct,表示机器人往某一个方向移动 nextX := x + directX[direct] nextY := y + directY[direct] 其他代码按照题意翻译即可