# [842. Split Array into Fibonacci Sequence](https://leetcode.com/problems/split-array-into-fibonacci-sequence/) ## 题目 Given a string `S` of digits, such as `S = "123456579"`, we can split it into a *Fibonacci-like sequence* `[123, 456, 579].` Formally, a Fibonacci-like sequence is a list `F` of non-negative integers such that: - `0 <= F[i] <= 2^31 - 1`, (that is, each integer fits a 32-bit signed integer type); - `F.length >= 3`; - and `F[i] + F[i+1] = F[i+2]` for all `0 <= i < F.length - 2`. Also, note that when splitting the string into pieces, each piece must not have extra leading zeroes, except if the piece is the number 0 itself. Return any Fibonacci-like sequence split from `S`, or return `[]` if it cannot be done. **Example 1**: Input: "123456579" Output: [123,456,579] **Example 2**: Input: "11235813" Output: [1,1,2,3,5,8,13] **Example 3**: Input: "112358130" Output: [] Explanation: The task is impossible. **Example 4**: Input: "0123" Output: [] Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid. **Example 5**: Input: "1101111" Output: [110, 1, 111] Explanation: The output [11, 0, 11, 11] would also be accepted. **Note**: 1. `1 <= S.length <= 200` 2. `S` contains only digits. ## 题目大意 给定一个数字字符串 S,比如 S = "123456579",我们可以将它分成斐波那契式的序列 [123, 456, 579]。斐波那契式序列是一个非负整数列表 F,且满足: - 0 <= F[i] <= 2^31 - 1,(也就是说,每个整数都符合 32 位有符号整数类型); - F.length >= 3; - 对于所有的0 <= i < F.length - 2,都有 F[i] + F[i+1] = F[i+2] 成立。 另外,请注意,将字符串拆分成小块时,每个块的数字一定不要以零开头,除非这个块是数字 0 本身。返回从 S 拆分出来的所有斐波那契式的序列块,如果不能拆分则返回 []。 ## 解题思路 - 这一题是第 306 题的加强版。第 306 题要求判断字符串是否满足斐波那契数列形式。这一题要求输出按照斐波那契数列形式分割之后的数字数组。 - 这一题思路和第 306 题基本一致,需要注意的是题目中的一个限制条件,`0 <= F[i] <= 2^31 - 1`,注意这个条件,笔者开始没注意,后面输出解就出现错误了,可以看笔者的测试文件用例的最后两组数据,这两组都是可以分解成斐波那契数列的,但是由于分割以后的数字都大于了 `2^31 - 1`,所以这些解都不能要! - 这一题也要特别注意剪枝条件,没有剪枝条件,时间复杂度特别高,加上合理的剪枝条件以后,0ms 通过。 ## 代码 ```go package leetcode import ( "strconv" "strings" ) func splitIntoFibonacci(S string) []int { if len(S) < 3 { return []int{} } res, isComplete := []int{}, false for firstEnd := 0; firstEnd < len(S)/2; firstEnd++ { if S[0] == '0' && firstEnd > 0 { break } first, _ := strconv.Atoi(S[:firstEnd+1]) if first >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647,此处剪枝很关键! break } for secondEnd := firstEnd + 1; max(firstEnd, secondEnd-firstEnd) <= len(S)-secondEnd; secondEnd++ { if S[firstEnd+1] == '0' && secondEnd-firstEnd > 1 { break } second, _ := strconv.Atoi(S[firstEnd+1 : secondEnd+1]) if second >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647,此处剪枝很关键! break } findRecursiveCheck(S, first, second, secondEnd+1, &res, &isComplete) } } return res } //Propagate for rest of the string func findRecursiveCheck(S string, x1 int, x2 int, left int, res *[]int, isComplete *bool) { if x1 >= 1<<31 || x2 >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647,此处剪枝很关键! return } if left == len(S) { if !*isComplete { *isComplete = true *res = append(*res, x1) *res = append(*res, x2) } return } if strings.HasPrefix(S[left:], strconv.Itoa(x1+x2)) && !*isComplete { *res = append(*res, x1) findRecursiveCheck(S, x2, x1+x2, left+len(strconv.Itoa(x1+x2)), res, isComplete) return } if len(*res) > 0 && !*isComplete { *res = (*res)[:len(*res)-1] } return } ```