# [456. 132 Pattern](https://leetcode.com/problems/132-pattern/) ## 题目 Given a sequence of n integers a1, a2, ..., an, a 132 pattern is a subsequence a**i**, a**j**, a**k** such that **i** < **j** < **k** and a**i** < a**k** < a**j**. Design an algorithm that takes a list of n numbers as input and checks whether there is a 132 pattern in the list. **Note**: n will be less than 15,000. **Example 1**: Input: [1, 2, 3, 4] Output: False Explanation: There is no 132 pattern in the sequence. **Example 2**: Input: [3, 1, 4, 2] Output: True Explanation: There is a 132 pattern in the sequence: [1, 4, 2]. **Example 3**: Input: [-1, 3, 2, 0] Output: True Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0]. ## 题目大意 给定一个整数序列:a1, a2, ..., an,一个 132 模式的子序列 ai, aj, ak 被定义为:当 i < j < k 时,ai < ak < aj。设计一个算法,当给定有 n 个数字的序列时,验证这个序列中是否含有 132 模式的子序列。注意:n 的值小于 15000。 ## 解题思路 - 这一题用暴力解法一定超时 - 这一题算是单调栈的经典解法,可以考虑从数组末尾开始往前扫,维护一个递减序列 ## 代码 ```go package leetcode import ( "fmt" "math" ) // 解法一 单调栈 func find132pattern(nums []int) bool { if len(nums) < 3 { return false } num3, stack := math.MinInt64, []int{} for i := len(nums) - 1; i >= 0; i-- { if nums[i] < num3 { return true } for len(stack) != 0 && nums[i] > stack[len(stack)-1] { num3 = stack[len(stack)-1] stack = stack[:len(stack)-1] } stack = append(stack, nums[i]) fmt.Printf("stack = %v \n", stack) } return false } // 解法二 暴力解法,超时! func find132pattern1(nums []int) bool { if len(nums) < 3 { return false } for j := 0; j < len(nums); j++ { stack := []int{} for i := j; i < len(nums); i++ { if len(stack) == 0 || (len(stack) > 0 && nums[i] > nums[stack[len(stack)-1]]) { stack = append(stack, i) } else if nums[i] < nums[stack[len(stack)-1]] { index := len(stack) - 1 for ; index >= 0; index-- { if nums[stack[index]] < nums[i] { return true } } } } } return false } ```