# [1725. Number Of Rectangles That Can Form The Largest Square](https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/) ## 题目 You are given an array `rectangles` where `rectangles[i] = [li, wi]` represents the `ith` rectangle of length `li` and width `wi`. You can cut the `ith` rectangle to form a square with a side length of `k` if both `k <= li` and `k <= wi`. For example, if you have a rectangle `[4,6]`, you can cut it to get a square with a side length of at most `4`. Let `maxLen` be the side length of the **largest** square you can obtain from any of the given rectangles. Return *the **number** of rectangles that can make a square with a side length of* `maxLen`. **Example 1:** ``` Input: rectangles = [[5,8],[3,9],[5,12],[16,5]] Output: 3 Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5]. The largest possible square is of length 5, and you can get it out of 3 rectangles. ``` **Example 2:** ``` Input: rectangles = [[2,3],[3,7],[4,3],[3,7]] Output: 3 ``` **Constraints:** - `1 <= rectangles.length <= 1000` - `rectangles[i].length == 2` - `1 <= li, wi <= 10^9` - `li != wi` ## 题目大意 给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li 、宽度为 wi 。如果存在 k 同时满足 k <= li 和 k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例如,矩形 [4,6] 可以切成边长最大为 4 的正方形。设 maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。返回可以切出边长为 maxLen 的正方形的矩形 数目 。 ## 解题思路 - 简单题。扫描数组中的每一个矩形,先找到边长较小的那条边,作为正方形的边长。扫描过程中动态更新最大的正方形边长,并累加计数。循环一遍结束,输出最终计数值即可。 ## 代码 ```go package leetcode func countGoodRectangles(rectangles [][]int) int { minLength, count := 0, 0 for i, _ := range rectangles { minSide := 0 if rectangles[i][0] <= rectangles[i][1] { minSide = rectangles[i][0] } else { minSide = rectangles[i][1] } if minSide > minLength { minLength = minSide count = 1 } else if minSide == minLength { count++ } } return count } ```