# [1463. Cherry Pickup II](https://leetcode.com/problems/cherry-pickup-ii/) ## 题目 Given a `rows x cols` matrix `grid` representing a field of cherries. Each cell in `grid` represents the number of cherries that you can collect. You have two robots that can collect cherries for you, Robot #1 is located at the top-left corner (0,0) , and Robot #2 is located at the top-right corner (0, cols-1) of the grid. Return the maximum number of cherries collection using both robots  by following the rules below: - From a cell (i,j), robots can move to cell (i+1, j-1) , (i+1, j) or (i+1, j+1). - When any robot is passing through a cell, It picks it up all cherries, and the cell becomes an empty cell (0). - When both robots stay on the same cell, only one of them takes the cherries. - Both robots cannot move outside of the grid at any moment. - Both robots should reach the bottom row in the `grid`. **Example 1:** ![https://assets.leetcode.com/uploads/2020/04/29/sample_1_1802.png](https://assets.leetcode.com/uploads/2020/04/29/sample_1_1802.png) ``` Input: grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]] Output: 24 Explanation: Path of robot #1 and #2 are described in color green and blue respectively. Cherries taken by Robot #1, (3 + 2 + 5 + 2) = 12. Cherries taken by Robot #2, (1 + 5 + 5 + 1) = 12. Total of cherries: 12 + 12 = 24. ``` **Example 2:** ![https://assets.leetcode.com/uploads/2020/04/23/sample_2_1802.png](https://assets.leetcode.com/uploads/2020/04/23/sample_2_1802.png) ``` Input: grid = [[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]] Output: 28 Explanation: Path of robot #1 and #2 are described in color green and blue respectively. Cherries taken by Robot #1, (1 + 9 + 5 + 2) = 17. Cherries taken by Robot #2, (1 + 3 + 4 + 3) = 11. Total of cherries: 17 + 11 = 28. ``` **Example 3:** ``` Input: grid = [[1,0,0,3],[0,0,0,3],[0,0,3,3],[9,0,3,3]] Output: 22 ``` **Example 4:** ``` Input: grid = [[1,1],[1,1]] Output: 4 ``` **Constraints:** - `rows == grid.length` - `cols == grid[i].length` - `2 <= rows, cols <= 70` - `0 <= grid[i][j] <= 100` ## 题目大意 给你一个 rows x cols 的矩阵 grid 来表示一块樱桃地。 grid 中每个格子的数字表示你能获得的樱桃数目。你有两个机器人帮你收集樱桃,机器人 1 从左上角格子 (0,0) 出发,机器人 2 从右上角格子 (0, cols-1) 出发。请你按照如下规则,返回两个机器人能收集的最多樱桃数目: - 从格子 (i,j) 出发,机器人可以移动到格子 (i+1, j-1),(i+1, j) 或者 (i+1, j+1) 。 - 当一个机器人经过某个格子时,它会把该格子内所有的樱桃都摘走,然后这个位置会变成空格子,即没有樱桃的格子。 - 当两个机器人同时到达同一个格子时,它们中只有一个可以摘到樱桃。 - 两个机器人在任意时刻都不能移动到 grid 外面。 - 两个机器人最后都要到达 grid 最底下一行。 ## 解题思路 - 如果没有思路可以先用暴力解法 DFS 尝试。读完题可以分析出求最多樱桃数目,里面包含了很多重叠子问题,于是乎自然而然思路是用动态规划。数据规模上看,100 的数据规模最多能保证 O(n^3) 时间复杂度的算法不超时。 - 这一题的变量有 2 个,一个是行号,另外一个是机器人所在的列。具体来说,机器人每走一步的移动范围只能往下走,不能往上走,所以 2 个机器人所在行号一定相同。两个机器人的列号不同。综上,变量有 3 个,1 个行号和2 个列号。定义 `dp[i][j][k]` 代表第一个机器人从 (0,0) 走到 (i,k) 坐标,第二个机器人从 (0,n-1) 走到 (i,k) 坐标,两者最多能收集樱桃的数目。状态转移方程为 : {{< katex display >}} dp[i][j][k] = max \begin{pmatrix}\begin{array}{lr} dp[i-1][f(j_1))][f(j_2)] + grid[i][j_1] + grid[i][j_2], j_1\neq j_2  \\ dp[i-1][f(j_1))][f(j_2)] + grid[i][j_1], j_1 = j_2 \end{array} \end{pmatrix} {{< /katex>}} 其中: {{< katex display >}} \left\{\begin{matrix}f(j_1) \in [0,n), f(j_1) - j_1 \in [-1,0,1]\\ f(j_2) \in [0,n), f(j_2) - j_2 \in [-1,0,1]\end{matrix}\right. {{< /katex>}} 即状态转移过程中需要在 `[j1 - 1, j1, j1 + 1]` 中枚举 `j1`,同理,在 在 `[j2 - 1, j2, j2 + 1]` 中枚举 `j2`,每个状态转移需要枚举这 3*3 = 9 种状态。 - 边界条件 `dp[i][0][n-1] = grid[0][0] + grid[0][n-1]`,最终答案存储在 `dp[m-1]` 行中,循环找出 `dp[m-1][j1][j2]` 中的最大值,到此该题得解。 ## 代码 ```go package leetcode func cherryPickup(grid [][]int) int { rows, cols := len(grid), len(grid[0]) dp := make([][][]int, rows) for i := 0; i < rows; i++ { dp[i] = make([][]int, cols) for j := 0; j < cols; j++ { dp[i][j] = make([]int, cols) } } for i := 0; i < rows; i++ { for j := 0; j <= i && j < cols; j++ { for k := cols - 1; k >= cols-1-i && k >= 0; k-- { max := 0 for a := j - 1; a <= j+1; a++ { for b := k - 1; b <= k+1; b++ { sum := isInBoard(dp, i-1, a, b) if a == b && i > 0 && a >= 0 && a < cols { sum -= grid[i-1][a] } if sum > max { max = sum } } } if j == k { max += grid[i][j] } else { max += grid[i][j] + grid[i][k] } dp[i][j][k] = max } } } count := 0 for j := 0; j < cols && j < rows; j++ { for k := cols - 1; k >= 0 && k >= cols-rows; k-- { if dp[rows-1][j][k] > count { count = dp[rows-1][j][k] } } } return count } func isInBoard(dp [][][]int, i, j, k int) int { if i < 0 || j < 0 || j >= len(dp[0]) || k < 0 || k >= len(dp[0]) { return 0 } return dp[i][j][k] } ```