# [1383. Maximum Performance of a Team](https://leetcode.com/problems/maximum-performance-of-a-team/) ## 题目 You are given two integers `n` and `k` and two integer arrays `speed` and `efficiency` both of length `n`. There are `n` engineers numbered from `1` to `n`. `speed[i]` and `efficiency[i]` represent the speed and efficiency of the `ith` engineer respectively. Choose **at most** `k` different engineers out of the `n` engineers to form a team with the maximum **performance**. The performance of a team is the sum of their engineers' speeds multiplied by the minimum efficiency among their engineers. Return *the maximum performance of this team*. Since the answer can be a huge number, return it **modulo** `109 + 7`. **Example 1:** ``` Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2 Output: 60 Explanation: We have the maximum performance of the team by selecting engineer 2 (with speed=10 and efficiency=4) and engineer 5 (with speed=5 and efficiency=7). That is, performance = (10 + 5) * min(4, 7) = 60. ``` **Example 2:** ``` Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 3 Output: 68 Explanation: This is the same example as the first but k = 3. We can select engineer 1, engineer 2 and engineer 5 to get the maximum performance of the team. That is, performance = (2 + 10 + 5) * min(5, 4, 7) = 68. ``` **Example 3:** ``` Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 4 Output: 72 ``` **Constraints:** - `1 <= <= k <= n <= 105` - `speed.length == n` - `efficiency.length == n` - `1 <= speed[i] <= 105` - `1 <= efficiency[i] <= 108` ## 题目大意 公司有编号为 1 到 n 的 n 个工程师,给你两个数组 speed 和 efficiency ,其中 speed[i] 和 efficiency[i] 分别代表第 i 位工程师的速度和效率。请你返回由最多 k 个工程师组成的 最大团队表现值 ,由于答案可能很大,请你返回结果对 10^9 + 7 取余后的结果。团队表现值 的定义为:一个团队中「所有工程师速度的和」乘以他们「效率值中的最小值」。 ## 解题思路 - 题目要求返回最大团队表现值,表现值需要考虑速度的累加和,和效率的最小值。即使速度快,效率的最小值很小,总的表现值还是很小。先将效率从大到小排序。从效率高的工程师开始选起,遍历过程中维护一个大小为 k 的速度最小堆。每次遍历都计算一次团队最大表现值。扫描完成,最大团队表现值也筛选出来了。具体实现见下面的代码。 ## 代码 ```go package leetcode import ( "container/heap" "sort" ) func maxPerformance(n int, speed []int, efficiency []int, k int) int { indexes := make([]int, n) for i := range indexes { indexes[i] = i } sort.Slice(indexes, func(i, j int) bool { return efficiency[indexes[i]] > efficiency[indexes[j]] }) ph := speedHeap{} heap.Init(&ph) speedSum := 0 var max int64 for _, index := range indexes { if ph.Len() == k { speedSum -= heap.Pop(&ph).(int) } speedSum += speed[index] heap.Push(&ph, speed[index]) max = Max(max, int64(speedSum)*int64(efficiency[index])) } return int(max % (1e9 + 7)) } type speedHeap []int func (h speedHeap) Less(i, j int) bool { return h[i] < h[j] } func (h speedHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h speedHeap) Len() int { return len(h) } func (h *speedHeap) Push(x interface{}) { *h = append(*h, x.(int)) } func (h *speedHeap) Pop() interface{} { res := (*h)[len(*h)-1] *h = (*h)[:h.Len()-1] return res } func Max(a, b int64) int64 { if a > b { return a } return b } ```