# [1123. Lowest Common Ancestor of Deepest Leaves](https://leetcode.com/problems/lowest-common-ancestor-of-deepest-leaves/) ## 题目 Given a rooted binary tree, return the lowest common ancestor of its deepest leaves. Recall that: - The node of a binary tree is a *leaf* if and only if it has no children - The *depth* of the root of the tree is 0, and if the depth of a node is `d`, the depth of each of its children is `d+1`. - The *lowest common ancestor* of a set `S` of nodes is the node `A` with the largest depth such that every node in S is in the subtree with root `A`. **Example 1:** Input: root = [1,2,3] Output: [1,2,3] Explanation: The deepest leaves are the nodes with values 2 and 3. The lowest common ancestor of these leaves is the node with value 1. The answer returned is a TreeNode object (not an array) with serialization "[1,2,3]". **Example 2:** Input: root = [1,2,3,4] Output: [4] **Example 3:** Input: root = [1,2,3,4,5] Output: [2,4,5] **Constraints:** - The given tree will have between 1 and 1000 nodes. - Each node of the tree will have a distinct value between 1 and 1000. ## 题目大意 给你一个有根节点的二叉树,找到它最深的叶节点的最近公共祖先。 回想一下: - 叶节点 是二叉树中没有子节点的节点 - 树的根节点的 深度 为 0,如果某一节点的深度为 d,那它的子节点的深度就是 d+1 - 如果我们假定 A 是一组节点 S 的 最近公共祖先,S 中的每个节点都在以 A 为根节点的子树中,且 A 的深度达到此条件下可能的最大值。   提示: - 给你的树中将有 1 到 1000 个节点。 - 树中每个节点的值都在 1 到 1000 之间。 ## 解题思路 - 给出一颗树,找出最深的叶子节点的最近公共祖先 LCA。 - 这一题思路比较直接。先遍历找到最深的叶子节点,如果左右子树的最深的叶子节点深度相同,那么当前节点就是它们的最近公共祖先。如果左右子树的最深的深度不等,那么需要继续递归往下找符合题意的 LCA。如果最深的叶子节点没有兄弟,那么公共父节点就是叶子本身,否则返回它的 LCA。 - 有几个特殊的测试用例,见测试文件。特殊的点就是最深的叶子节点没有兄弟节点的情况。