package leetcode // 解法一 最快的解是 DP + 单调栈 func sumSubarrayMins(A []int) int { stack, dp, res, mod := []int{}, make([]int, len(A)+1), 0, 1000000007 stack = append(stack, -1) for i := 0; i < len(A); i++ { for stack[len(stack)-1] != -1 && A[i] <= A[stack[len(stack)-1]] { stack = stack[:len(stack)-1] } dp[i+1] = (dp[stack[len(stack)-1]+1] + (i-stack[len(stack)-1])*A[i]) % mod stack = append(stack, i) res += dp[i+1] res %= mod } return res } type pair struct { val int count int } // 解法二 用两个单调栈 func sumSubarrayMins1(A []int) int { res, n, mod := 0, len(A), 1000000007 lefts, rights, leftStack, rightStack := make([]int, n), make([]int, n), []*pair{}, []*pair{} for i := 0; i < n; i++ { count := 1 for len(leftStack) != 0 && leftStack[len(leftStack)-1].val > A[i] { count += leftStack[len(leftStack)-1].count leftStack = leftStack[:len(leftStack)-1] } leftStack = append(leftStack, &pair{val: A[i], count: count}) lefts[i] = count } for i := n - 1; i >= 0; i-- { count := 1 for len(rightStack) != 0 && rightStack[len(rightStack)-1].val >= A[i] { count += rightStack[len(rightStack)-1].count rightStack = rightStack[:len(rightStack)-1] } rightStack = append(rightStack, &pair{val: A[i], count: count}) rights[i] = count } for i := 0; i < n; i++ { res = (res + A[i]*lefts[i]*rights[i]) % mod } return res } // 解法三 暴力解法,中间很多重复判断子数组的情况 func sumSubarrayMins2(A []int) int { res, mod := 0, 1000000007 for i := 0; i < len(A); i++ { stack := []int{} stack = append(stack, A[i]) for j := i; j < len(A); j++ { if stack[len(stack)-1] >= A[j] { stack = stack[:len(stack)-1] stack = append(stack, A[j]) } res += stack[len(stack)-1] } } return res % mod }