# [589. N-ary Tree Preorder Traversal](https://leetcode.com/problems/n-ary-tree-preorder-traversal/) ## 题目 Given the `root` of an n-ary tree, return *the preorder traversal of its nodes' values*. Nary-Tree input serialization is represented in their level order traversal. Each group of children is separated by the null value (See examples) **Example 1:** ![https://assets.leetcode.com/uploads/2018/10/12/narytreeexample.png](https://assets.leetcode.com/uploads/2018/10/12/narytreeexample.png) ``` Input: root = [1,null,3,2,4,null,5,6] Output: [1,3,5,6,2,4] ``` **Example 2:** ![https://assets.leetcode.com/uploads/2019/11/08/sample_4_964.png](https://assets.leetcode.com/uploads/2019/11/08/sample_4_964.png) ``` Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14] Output: [1,2,3,6,7,11,14,4,8,12,5,9,13,10] ``` **Constraints:** - The number of nodes in the tree is in the range `[0, 104]`. - `0 <= Node.val <= 10^4` - The height of the n-ary tree is less than or equal to `1000`. **Follow up:** Recursive solution is trivial, could you do it iteratively? ## 题目大意 给定一个 N 叉树,返回其节点值的 **前序遍历** 。N 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 `null` 分隔(请参见示例)。 ## 解题思路 - N 叉树和二叉树的前序遍历原理完全一样。二叉树非递归解法需要用到栈辅助,N 叉树同样如此。将父节点的所有孩子节点**逆序**入栈,逆序的目的是为了让前序节点永远在栈顶。依次循环直到栈里所有元素都出栈。输出的结果即为 N 叉树的前序遍历。时间复杂度 O(n),空间复杂度 O(n)。 - 递归解法非常简单,见解法二。 ## 代码 ```go package leetcode // Definition for a Node. type Node struct { Val int Children []*Node } // 解法一 非递归 func preorder(root *Node) []int { res := []int{} if root == nil { return res } stack := []*Node{root} for len(stack) > 0 { r := stack[len(stack)-1] stack = stack[:len(stack)-1] res = append(res, r.Val) tmp := []*Node{} for _, v := range r.Children { tmp = append([]*Node{v}, tmp...) // 逆序存点 } stack = append(stack, tmp...) } return res } // 解法二 递归 func preorder1(root *Node) []int { res := []int{} preorderdfs(root, &res) return res } func preorderdfs(root *Node, res *[]int) { if root != nil { *res = append(*res, root.Val) for i := 0; i < len(root.Children); i++ { preorderdfs(root.Children[i], res) } } } ```