# [478. Generate Random Point in a Circle](https://leetcode.com/problems/generate-random-point-in-a-circle/) ## 题目 Given the radius and x-y positions of the center of a circle, write a function `randPoint` which generates a uniform random point in the circle. Note: 1. input and output values are in [floating-point](https://www.webopedia.com/TERM/F/floating_point_number.html). 2. radius and x-y position of the center of the circle is passed into the class constructor. 3. a point on the circumference of the circle is considered to be in the circle. 4. `randPoint` returns a size 2 array containing x-position and y-position of the random point, in that order. **Example 1:** ``` Input: ["Solution","randPoint","randPoint","randPoint"] [[1,0,0],[],[],[]] Output: [null,[-0.72939,-0.65505],[-0.78502,-0.28626],[-0.83119,-0.19803]] ``` **Example 2:** ``` Input: ["Solution","randPoint","randPoint","randPoint"] [[10,5,-7.5],[],[],[]] Output: [null,[11.52438,-8.33273],[2.46992,-16.21705],[11.13430,-12.42337]] ``` **Explanation of Input Syntax:** The input is two lists: the subroutines called and their arguments. `Solution`'s constructor has three arguments, the radius, x-position of the center, and y-position of the center of the circle. `randPoint` has no arguments. Arguments are always wrapped with a list, even if there aren't any. ## 题目大意 给定圆的半径和圆心的 x、y 坐标,写一个在圆中产生均匀随机点的函数 randPoint 。 说明: - 输入值和输出值都将是浮点数。 - 圆的半径和圆心的 x、y 坐标将作为参数传递给类的构造函数。 - 圆周上的点也认为是在圆中。 - randPoint 返回一个包含随机点的x坐标和y坐标的大小为2的数组。 ## 解题思路 - 随机产生一个圆内的点,这个点一定满足定义 `(x-a)^2+(y-b)^2 ≤ R^2`,其中 `(a,b)` 是圆的圆心坐标,`R` 是半径。 - 先假设圆心坐标在 (0,0),这样方便计算,最终输出坐标的时候整体加上圆心的偏移量即可。`rand.Float64()` 产生一个 `[0.0,1.0)` 区间的浮点数。`-R ≤ 2 * R * rand() - R < R`,利用随机产生坐标点的横纵坐标 `(x,y)` 与半径 R 的关系,如果 `x^2 + y^2 ≤ R^2`,那么说明产生的点在圆内。最终输出的时候要记得加上圆心坐标的偏移值。 ## 代码 ```go package leetcode import ( "math" "math/rand" "time" ) type Solution struct { r float64 x float64 y float64 } func Constructor(radius float64, x_center float64, y_center float64) Solution { rand.Seed(time.Now().UnixNano()) return Solution{radius, x_center, y_center} } func (this *Solution) RandPoint() []float64 { /* a := angle() r := this.r * math.Sqrt(rand.Float64()) x := r * math.Cos(a) + this.x y := r * math.Sin(a) + this.y return []float64{x, y}*/ for { rx := 2*rand.Float64() - 1.0 ry := 2*rand.Float64() - 1.0 x := this.r * rx y := this.r * ry if x*x+y*y <= this.r*this.r { return []float64{x + this.x, y + this.y} } } } func angle() float64 { return rand.Float64() * 2 * math.Pi } /** * Your Solution object will be instantiated and called as such: * obj := Constructor(radius, x_center, y_center); * param_1 := obj.RandPoint(); */ ```