# [441. Arranging Coins](https://leetcode.com/problems/arranging-coins/) ## 题目 You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins. Given n, find the total number of **full** staircase rows that can be formed. n is a non-negative integer and fits within the range of a 32-bit signed integer. **Example 1:** n = 5 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ Because the 3rd row is incomplete, we return 2. **Example 2:** n = 8 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Because the 4th row is incomplete, we return 3. ## 题目大意 你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状,第 k 行就必须正好有 k 枚硬币。给定一个数字 n,找出可形成完整阶梯行的总行数。n 是一个非负整数,并且在32位有符号整型的范围内。 ## 解题思路 - n 个硬币,按照递增的方式排列搭楼梯,第一层一个,第二层二个,……第 n 层需要 n 个硬币。问硬币 n 能够搭建到第几层? - 这一题有 2 种解法,第一种解法就是解方程求出 X,`(1+x)x/2 = n`,即 `x = floor(sqrt(2*n+1/4) - 1/2)`,第二种解法是模拟。