# [436. Find Right Interval](https://leetcode.com/problems/find-right-interval/) ## 题目 Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i. For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array. **Note:** 1. You may assume the interval's end point is always bigger than its start point. 2. You may assume none of these intervals have the same start point. **Example 1:** Input: [ [1,2] ] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1. **Example 2:** Input: [ [3,4], [2,3], [1,2] ] Output: [-1, 0, 1] Explanation: There is no satisfied "right" interval for [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point; For [1,2], the interval [2,3] has minimum-"right" start point. **Example 3:** Input: [ [1,4], [2,3], [3,4] ] Output: [-1, 2, -1] Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point. **NOTE:** input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature. ## 题目大意 给定一组区间,对于每一个区间 i,检查是否存在一个区间 j,它的起始点大于或等于区间 i 的终点,这可以称为 j 在 i 的“右侧”。 对于任何区间,你需要存储的满足条件的区间 j 的最小索引,这意味着区间 j 有最小的起始点可以使其成为“右侧”区间。如果区间 j 不存在,则将区间 i 存储为 -1。最后,你需要输出一个值为存储的区间值的数组。 注意: - 你可以假设区间的终点总是大于它的起始点。 - 你可以假定这些区间都不具有相同的起始点。 ## 解题思路 - 给出一个 `interval` 的 数组,要求找到每个 `interval` 在它右边第一个 `interval` 的下标。A 区间在 B 区间的右边:A 区间的左边界的值大于等于 B 区间的右边界。 - 这一题很明显可以用二分搜索来解答。先将 `interval` 数组排序,然后针对每个 `interval`,用二分搜索搜索大于等于 `interval` 右边界值的 `interval`。如果找到就把下标存入最终数组中,如果没有找到,把 `-1` 存入最终数组中。