# [376. Wiggle Subsequence](https://leetcode.com/problems/wiggle-subsequence/) ## 题目 Given an integer array `nums`, return *the length of the longest **wiggle sequence***. A **wiggle sequence** is a sequence where the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence. - For example, `[1, 7, 4, 9, 2, 5]` is a **wiggle sequence** because the differences `(6, -3, 5, -7, 3)` are alternately positive and negative. - In contrast, `[1, 4, 7, 2, 5]` and `[1, 7, 4, 5, 5]` are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero. A **subsequence** is obtained by deleting some elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order. **Example 1:** ``` Input: nums = [1,7,4,9,2,5] Output: 6 Explanation: The entire sequence is a wiggle sequence. ``` **Example 2:** ``` Input: nums = [1,17,5,10,13,15,10,5,16,8] Output: 7 Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. ``` **Example 3:** ``` Input: nums = [1,2,3,4,5,6,7,8,9] Output: 2 ``` **Constraints:** - `1 <= nums.length <= 1000` - `0 <= nums[i] <= 1000` **Follow up:** Could you solve this in `O(n)` time? ## 题目大意 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。 ## 解题思路 - 题目要求找到摆动序列最长的子序列。本题可以用贪心的思路,记录当前序列的上升和下降的趋势。扫描数组过程中,每扫描一个元素都判断是“峰”还是“谷”,根据前一个是“峰”还是“谷”做出对应的决定。利用贪心的思想找到最长的摆动子序列。 ## 代码 ```go package leetcode func wiggleMaxLength(nums []int) int { if len(nums) < 2 { return len(nums) } res := 1 prevDiff := nums[1] - nums[0] if prevDiff != 0 { res = 2 } for i := 2; i < len(nums); i++ { diff := nums[i] - nums[i-1] if diff > 0 && prevDiff <= 0 || diff < 0 && prevDiff >= 0 { res++ prevDiff = diff } } return res } ```