# [142. Linked List Cycle II](https://leetcode.com/problems/linked-list-cycle-ii/) ## 题目 Given a linked list, return the node where the cycle begins. If there is no cycle, return null. To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list. Note: Do not modify the linked list. Example 1: ```c Input: head = [3,2,0,-4], pos = 1 Output: tail connects to node index 1 Explanation: There is a cycle in the linked list, where tail connects to the second node. ``` Example 2: ```c Input: head = [1,2], pos = 0 Output: tail connects to node index 0 Explanation: There is a cycle in the linked list, where tail connects to the first node. ``` Example 3: ```c Input: head = [1], pos = -1 Output: no cycle Explanation: There is no cycle in the linked list. ``` ## 题目大意 判断链表是否有环,不能使用额外的空间。如果有环,输出环的起点指针,如果没有环,则输出空。 ## 解题思路 这道题是第 141 题的加强版。在判断是否有环的基础上,还需要输出环的第一个点。 分析一下判断环的原理。fast 指针一次都 2 步,slow 指针一次走 1 步。令链表 head 到环的一个点需要 x1 步,从环的第一个点到相遇点需要 x2 步,从环中相遇点回到环的第一个点需要 x3 步。那么环的总长度是 x2 + x3 步。 fast 和 slow 会相遇,说明他们走的时间是相同的,可以知道他们走的路程有以下的关系: ```c fast 的 t = (x1 + x2 + x3 + x2) / 2 slow 的 t = (x1 + x2) / 1 x1 + x2 + x3 + x2 = 2 * (x1 + x2) 所以 x1 = x3 ``` 所以 2 个指针相遇以后,如果 slow 继续往前走,fast 指针回到起点 head,两者都每次走一步,那么必定会在环的起点相遇,相遇以后输出这个点即是结果。