# [1631. Path With Minimum Effort](https://leetcode.com/problems/path-with-minimum-effort/) ## 题目 You are a hiker preparing for an upcoming hike. You are given `heights`, a 2D array of size `rows x columns`, where `heights[row][col]` represents the height of cell `(row, col)`. You are situated in the top-left cell, `(0, 0)`, and you hope to travel to the bottom-right cell, `(rows-1, columns-1)` (i.e., **0-indexed**). You can move **up**, **down**, **left**, or **right**, and you wish to find a route that requires the minimum **effort**. A route's **effort** is the **maximum absolute difference** in heights between two consecutive cells of the route. Return *the minimum **effort** required to travel from the top-left cell to the bottom-right cell.* **Example 1:** ![https://assets.leetcode.com/uploads/2020/10/04/ex1.png](https://assets.leetcode.com/uploads/2020/10/04/ex1.png) ``` Input: heights = [[1,2,2],[3,8,2],[5,3,5]] Output: 2 Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells. This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3. ``` **Example 2:** ![https://assets.leetcode.com/uploads/2020/10/04/ex2.png](https://assets.leetcode.com/uploads/2020/10/04/ex2.png) ``` Input: heights = [[1,2,3],[3,8,4],[5,3,5]] Output: 1 Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5]. ``` **Example 3:** ![https://assets.leetcode.com/uploads/2020/10/04/ex3.png](https://assets.leetcode.com/uploads/2020/10/04/ex3.png) ``` Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]] Output: 0 Explanation: This route does not require any effort. ``` **Constraints:** - `rows == heights.length` - `columns == heights[i].length` - `1 <= rows, columns <= 100` - `1 <= heights[i][j] <= 10^6` ## 题目大意 你准备参加一场远足活动。给你一个二维 `rows x columns` 的地图 `heights` ,其中 `heights[row][col]` 表示格子 `(row, col)` 的高度。一开始你在最左上角的格子 `(0, 0)` ,且你希望去最右下角的格子 `(rows-1, columns-1)` (注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。请你返回从左上角走到右下角的最小 体力消耗值 。 ## 解题思路 - 此题和第 778 题解题思路完全一致。在第 778 题中求的是最短连通时间。此题求的是连通路径下的最小体力值。都是求的最小值,只是 2 个值的意义不同罢了。 - 按照第 778 题的思路,本题也有多种解法。第一种解法是 DFS + 二分。先将题目变换一个等价问法。题目要求找到最小体力消耗值,也相当于问是否存在一个体力消耗值 x,只要大于等于 x,一定能连通。利用二分搜索来找到这个临界值。体力消耗值是有序的,此处满足二分搜索的条件。题目给定柱子高度是 [1,10^6],所以体力值一定在 [0,10^6-1] 这个区间内。判断是否取中值的条件是用 DFS 或者 BFS 搜索 (0,0) 点和 (N-1, N-1) 点之间是否连通。时间复杂度:O(mnlogC),其中 m 和 n 分别是地图的行数和列数,C 是格子的最大高度。C 最大为 10^6,所以 logC 常数也很小。空间复杂度 O(mn)。 - 第二种解法是并查集。将图中所有边按照权值从小到大进行排序,并依次加入并查集中。直到加入一条权值为 x 的边以后,左上角到右下角连通了。最小体力消耗值也就找到了。注意加入边的时候,只加入 `i-1` 和 `i` ,`j-1` 和 `j` 这 2 类相邻的边。因为最小体力消耗意味着不走回头路。上下左右四个方向到达一个节点,只可能从上边和左边走过来。从下边和右边走过来肯定是浪费体力了。时间复杂度:O(mnlog(mn)),其中 m 和 n 分别是地图的行数和列数,图中的边数为 O(mn)。空间复杂度 O(mn),即为存储所有边以及并查集需要的空间。 ## 代码 ```go package leetcode import ( "sort" "github.com/halfrost/LeetCode-Go/template" ) var dir = [4][2]int{ {0, 1}, {1, 0}, {0, -1}, {-1, 0}, } // 解法一 DFS + 二分 func minimumEffortPath(heights [][]int) int { n, m := len(heights), len(heights[0]) visited := make([][]bool, n) for i := range visited { visited[i] = make([]bool, m) } low, high := 0, 1000000 for low < high { threshold := low + (high-low)>>1 if !hasPath(heights, visited, 0, 0, threshold) { low = threshold + 1 } else { high = threshold } for i := range visited { for j := range visited[i] { visited[i][j] = false } } } return low } func hasPath(heights [][]int, visited [][]bool, i, j, threshold int) bool { n, m := len(heights), len(heights[0]) if i == n-1 && j == m-1 { return true } visited[i][j] = true res := false for _, d := range dir { ni, nj := i+d[0], j+d[1] if ni < 0 || ni >= n || nj < 0 || nj >= m || visited[ni][nj] || res { continue } diff := abs(heights[i][j] - heights[ni][nj]) if diff <= threshold && hasPath(heights, visited, ni, nj, threshold) { res = true } } return res } func abs(a int) int { if a < 0 { a = -a } return a } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a < b { return b } return a } // 解法二 并查集 func minimumEffortPath1(heights [][]int) int { n, m, edges, uf := len(heights), len(heights[0]), []edge{}, template.UnionFind{} uf.Init(n * m) for i, row := range heights { for j, h := range row { id := i*m + j if i > 0 { edges = append(edges, edge{id - m, id, abs(h - heights[i-1][j])}) } if j > 0 { edges = append(edges, edge{id - 1, id, abs(h - heights[i][j-1])}) } } } sort.Slice(edges, func(i, j int) bool { return edges[i].diff < edges[j].diff }) for _, e := range edges { uf.Union(e.v, e.w) if uf.Find(0) == uf.Find(n*m-1) { return e.diff } } return 0 } type edge struct { v, w, diff int } ```