# [669. Trim a Binary Search Tree](https://leetcode.com/problems/trim-a-binary-search-tree/) ## 题目 Given the `root` of a binary search tree and the lowest and highest boundaries as `low` and `high`, trim the tree so that all its elements lies in `[low, high]`. Trimming the tree should **not** change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a **unique answer**. Return *the root of the trimmed binary search tree*. Note that the root may change depending on the given bounds. **Example 1:** ![https://assets.leetcode.com/uploads/2020/09/09/trim1.jpg](https://assets.leetcode.com/uploads/2020/09/09/trim1.jpg) ``` Input: root = [1,0,2], low = 1, high = 2 Output: [1,null,2] ``` **Example 2:** ![https://assets.leetcode.com/uploads/2020/09/09/trim2.jpg](https://assets.leetcode.com/uploads/2020/09/09/trim2.jpg) ``` Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3 Output: [3,2,null,1] ``` **Example 3:** ``` Input: root = [1], low = 1, high = 2 Output: [1] ``` **Example 4:** ``` Input: root = [1,null,2], low = 1, high = 3 Output: [1,null,2] ``` **Example 5:** ``` Input: root = [1,null,2], low = 2, high = 4 Output: [2] ``` **Constraints:** - The number of nodes in the tree in the range `[1, 10^4]`. - `0 <= Node.val <= 10^4` - The value of each node in the tree is **unique**. - `root` is guaranteed to be a valid binary search tree. - `0 <= low <= high <= 10^4` ## 题目大意 给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树不应该改变保留在树中的元素的相对结构(即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在唯一的答案。所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。 ## 解题思路 - 这一题考察二叉搜索树中的递归遍历。递归遍历二叉搜索树每个结点,根据有序性,当前结点如果比 high 大,那么当前结点的右子树全部修剪掉,再递归修剪左子树;当前结点如果比 low 小,那么当前结点的左子树全部修剪掉,再递归修剪右子树。处理完越界的情况,剩下的情况都在区间内,分别递归修剪左子树和右子树即可。 ## 代码 ```go package leetcode import ( "github.com/halfrost/LeetCode-Go/structures" ) // TreeNode define type TreeNode = structures.TreeNode /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func trimBST(root *TreeNode, low int, high int) *TreeNode { if root == nil { return root } if root.Val > high { return trimBST(root.Left, low, high) } if root.Val < low { return trimBST(root.Right, low, high) } root.Left = trimBST(root.Left, low, high) root.Right = trimBST(root.Right, low, high) return root } ```