# [435. Non-overlapping Intervals](https://leetcode.com/problems/non-overlapping-intervals/) ## 题目 Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping. **Note:** 1. You may assume the interval's end point is always bigger than its start point. 2. Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other. **Example 1:** Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping. **Example 2:** Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping. **Example 3:** Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping. **NOTE:** input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature. ## 题目大意 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。 注意: 1. 可以认为区间的终点总是大于它的起点。 2. 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。 ## 解题思路 - 给定一组区间,问最少删除多少个区间,可以让这些区间之间互相不重叠。注意,给定区间的起始点永远小于终止点。[1,2] 和 [2,3] 不叫重叠。 - 这一题可以反过来考虑,给定一组区间,问最多保留多少区间,可以让这些区间之间相互不重叠。先排序,判断区间是否重叠。 - 这一题一种做法是利用动态规划,模仿最长上升子序列的思想,来解题。 - 这道题另外一种做法是按照区间的结尾进行排序,每次选择结尾最早的,且和前一个区间不重叠的区间。选取结尾最早的,就可以给后面留出更大的空间,供后面的区间选择。这样可以保留更多的区间。这种做法是贪心算法的思想。