# [396. Rotate Function](https://leetcode.com/problems/rotate-function/) ## 题目 You are given an integer array `nums` of length `n`. Assume `arrk` to be an array obtained by rotating `nums` by `k` positions clock-wise. We define the **rotation function** `F` on `nums` as follow: - `F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]`. Return the maximum value of `F(0), F(1), ..., F(n-1)`. The test cases are generated so that the answer fits in a **32-bit** integer. **Example 1:** ```c Input: nums = [4,3,2,6] Output: 26 Explanation: F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26. ``` **Example 2:** ```c Input: nums = [100] Output: 0 ``` **Constraints:** - `n == nums.length` - `1 <= n <= 105` - `-100 <= nums[i] <= 100` ## 题目大意 给定一个长度为`n`的整数数组`nums`,设`arrk`是数组`nums`顺时针旋转`k`个位置后的数组。 定义`nums`的旋转函数`F`为: - `F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]` 返回`F(0), F(1), ..., F(n-1)`中的最大值。 ## 解题思路 **抽象化观察:** ```c nums = [A0, A1, A2, A3] sum = A0 + A1 + A2+ A3 F(0) = 0*A0 +0*A0 + 1*A1 + 2*A2 + 3*A3 F(1) = 0*A3 + 1*A0 + 2*A1 + 3*A2 = F(0) + (A0 + A1 + A2) - 3*A3 = F(0) + (sum-A3) - 3*A3 = F(0) + sum - 4*A3 F(2) = 0*A2 + 1*A3 + 2*A0 + 3*A1 = F(1) + A3 + A0 + A1 - 3*A2 = F(1) + sum - 4*A2 F(3) = 0*A1 + 1*A2 + 2*A3 + 3*A0 = F(2) + A2 + A3 + A0 - 3*A1 = F(2) + sum - 4*A1 // 记sum为nums数组中所有元素和 // 可以猜测当0 ≤ i < n时存在公式: F(i) = F(i-1) + sum - n * A(n-i) ``` **数学归纳法证明迭代公式:** 根据题目中给定的旋转函数公式可得已知条件: - `F(0) = 0×nums[0] + 1×nums[1] + ... + (n−1)×nums[n−1]`; - `F(1) = 1×nums[0] + 2×nums[1] + ... + 0×nums[n-1]`。 令数组`nums`中所有元素和为`sum`,用数学归纳法验证:当`1 ≤ k < n`时,`F(k) = F(k-1) + sum - n×nums[n-k]`成立。 **归纳奠基**:证明`k=1`时命题成立。 ```c F(1) = 1×nums[0] + 2×nums[1] + ... + 0×nums[n-1] = F(0) + sum - n×nums[n-1] ``` **归纳假设**:假设`F(k) = F(k-1) + sum - n×nums[n-k]`成立。 **归纳递推**:由归纳假设推出`F(k+1) = F(k) + sum - n×nums[n-(k+1)]`成立,则假设的递推公式成立。 ```c F(k+1) = (k+1)×nums[0] + k×nums[1] + ... + 0×nums[n-1] = F(k) + sum - n×nums[n-(k+1)] ``` 因此可以得到递推公式: - 当`n = 0`时,`F(0) = 0×nums[0] + 1×nums[1] + ... + (n−1)×nums[n−1]` - 当`1 ≤ k < n`时,`F(k) = F(k-1) + sum - n×nums[n-k]`成立。 循环遍历`0 ≤ k < n`,计算出不同的`F(k)`并不断更新最大值,就能求出`F(0), F(1), ..., F(n-1)`中的最大值。