# [63. Unique Paths II](https://leetcode.com/problems/unique-paths-ii/) ## 题目 A robot is located at the top-left corner of a *m* x *n* grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). Now consider if some obstacles are added to the grids. How many unique paths would there be? ![](https://assets.leetcode.com/uploads/2018/10/22/robot_maze.png) An obstacle and empty space is marked as `1` and `0` respectively in the grid. **Note:** *m* and *n* will be at most 100. **Example 1:** Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2 Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1. Right -> Right -> Down -> Down 2. Down -> Down -> Right -> Right ## 题目大意 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径? ## 解题思路 - 这一题是第 62 题的加强版。也是一道考察 DP 的简单题。 - 这一题比第 62 题增加的条件是地图中会出现障碍物,障碍物的处理方法是 `dp[i][j]=0`。 - 需要注意的一种情况是,起点就是障碍物,那么这种情况直接输出 0 。