# [851. Loud and Rich](https://leetcode.com/problems/loud-and-rich/) ## 题目 In a group of N people (labelled `0, 1, 2, ..., N-1`), each person has different amounts of money, and different levels of quietness. For convenience, we'll call the person with label `x`, simply "person `x`". We'll say that `richer[i] = [x, y]` if person `x` definitely has more money than person `y`. Note that `richer` may only be a subset of valid observations. Also, we'll say `quiet = q` if person x has quietness `q`. Now, return `answer`, where `answer = y` if `y` is the least quiet person (that is, the person `y` with the smallest value of `quiet[y]`), among all people who definitely have equal to or more money than person `x`. **Example 1**: ``` Input: richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0] Output: [5,5,2,5,4,5,6,7] Explanation: answer[0] = 5. Person 5 has more money than 3, which has more money than 1, which has more money than 0. The only person who is quieter (has lower quiet[x]) is person 7, but it isn't clear if they have more money than person 0. answer[7] = 7. Among all people that definitely have equal to or more money than person 7 (which could be persons 3, 4, 5, 6, or 7), the person who is the quietest (has lower quiet[x]) is person 7. The other answers can be filled out with similar reasoning. ``` **Note**: 1. `1 <= quiet.length = N <= 500` 2. `0 <= quiet[i] < N`, all `quiet[i]` are different. 3. `0 <= richer.length <= N * (N-1) / 2` 4. `0 <= richer[i][j] < N` 5. `richer[i][0] != richer[i][1]` 6. `richer[i]`'s are all different. 7. The observations in `richer` are all logically consistent. ## 题目大意 在一组 N 个人(编号为 0, 1, 2, ..., N-1)中,每个人都有不同数目的钱,以及不同程度的安静(quietness)。为了方便起见,我们将编号为 x 的人简称为 "person x "。如果能够肯定 person x 比 person y 更有钱的话,我们会说 richer[i] = [x, y] 。注意 richer 可能只是有效观察的一个子集。另外,如果 person x 的安静程度为 q ,我们会说 quiet[x] = q 。现在,返回答案 answer ,其中 answer[x] = y 的前提是,在所有拥有的钱不少于 person x 的人中,person y 是最安静的人(也就是安静值 quiet[y] 最小的人)。 提示: - 1 <= quiet.length = N <= 500 - 0 <= quiet[i] < N,所有 quiet[i] 都不相同。 - 0 <= richer.length <= N * (N-1) / 2 - 0 <= richer[i][j] < N - richer[i][0] != richer[i][1] - richer[i] 都是不同的。 - 对 richer 的观察在逻辑上是一致的。 ## 解题思路 - 给出 2 个数组,richer 和 quiet,要求输出 answer,其中 answer = y 的前提是,在所有拥有的钱不少于 x 的人中,y 是最安静的人(也就是安静值 quiet[y] 最小的人) - 由题意可知,`richer` 构成了一个有向无环图,首先使用字典建立图的关系,找到比当前下标编号富有的所有的人。然后使用广度优先层次遍历,不断的使用富有的人,但是安静值更小的人更新子节点即可。 - 这一题还可以用拓扑排序来解答。将 `richer` 中描述的关系看做边,如果 `x > y`,则 `x` 指向 `y`。将 `quiet` 看成权值。用一个数组记录答案,初始时 `ans[i] = i`。然后对原图做拓扑排序,对于每一条边,如果发现 `quiet[ans[v]] > quiet[ans[u]]`,则 `ans[v]` 的答案为 `ans[u]`。时间复杂度即为拓扑排序的时间复杂度为 `O(m+n)`。空间复杂度需要 `O(m)` 的数组建图,需要 `O(n)` 的数组记录入度以及存储队列,所以空间复杂度为 `O(m+n)`。 ## 代码 ```go func loudAndRich(richer [][]int, quiet []int) []int { edges := make([][]int, len(quiet)) for i := range edges { edges[i] = []int{} } indegrees := make([]int, len(quiet)) for _, edge := range richer { n1, n2 := edge[0], edge[1] edges[n1] = append(edges[n1], n2) indegrees[n2]++ } res := make([]int, len(quiet)) for i := range res { res[i] = i } queue := []int{} for i, v := range indegrees { if v == 0 { queue = append(queue, i) } } for len(queue) > 0 { nexts := []int{} for _, n1 := range queue { for _, n2 := range edges[n1] { indegrees[n2]-- if quiet[res[n2]] > quiet[res[n1]] { res[n2] = res[n1] } if indegrees[n2] == 0 { nexts = append(nexts, n2) } } } queue = nexts } return res } ```