添加内容

This commit is contained in:
YDZ
2020-08-08 09:17:26 +08:00
parent 5015cc6b7b
commit fdba30f0c4
734 changed files with 4024 additions and 2129 deletions

View File

@ -0,0 +1,135 @@
# [842. Split Array into Fibonacci Sequence](https://leetcode.com/problems/split-array-into-fibonacci-sequence/)
## 题目
Given a string `S` of digits, such as `S = "123456579"`, we can split it into a *Fibonacci-like sequence* `[123, 456, 579].`
Formally, a Fibonacci-like sequence is a list `F` of non-negative integers such that:
- `0 <= F[i] <= 2^31 - 1`, (that is, each integer fits a 32-bit signed integer type);
- `F.length >= 3`;
- and `F[i] + F[i+1] = F[i+2]` for all `0 <= i < F.length - 2`.
Also, note that when splitting the string into pieces, each piece must not have extra leading zeroes, except if the piece is the number 0 itself.
Return any Fibonacci-like sequence split from `S`, or return `[]` if it cannot be done.
**Example 1**:
Input: "123456579"
Output: [123,456,579]
**Example 2**:
Input: "11235813"
Output: [1,1,2,3,5,8,13]
**Example 3**:
Input: "112358130"
Output: []
Explanation: The task is impossible.
**Example 4**:
Input: "0123"
Output: []
Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid.
**Example 5**:
Input: "1101111"
Output: [110, 1, 111]
Explanation: The output [11, 0, 11, 11] would also be accepted.
**Note**:
1. `1 <= S.length <= 200`
2. `S` contains only digits.
## 题目大意
给定一个数字字符串 S比如 S = "123456579",我们可以将它分成斐波那契式的序列 [123, 456, 579]。斐波那契式序列是一个非负整数列表 F且满足
- 0 <= F[i] <= 2^31 - 1也就是说每个整数都符合 32 位有符号整数类型);
- F.length >= 3
- 对于所有的0 <= i < F.length - 2都有 F[i] + F[i+1] = F[i+2] 成立
另外请注意将字符串拆分成小块时每个块的数字一定不要以零开头除非这个块是数字 0 本身返回从 S 拆分出来的所有斐波那契式的序列块如果不能拆分则返回 []。
## 解题思路
- 这一题是第 306 题的加强版 306 题要求判断字符串是否满足斐波那契数列形式这一题要求输出按照斐波那契数列形式分割之后的数字数组
- 这一题思路和第 306 题基本一致需要注意的是题目中的一个限制条件`0 <= F[i] <= 2^31 - 1`注意这个条件笔者开始没注意后面输出解就出现错误了可以看笔者的测试文件用例的最后两组数据这两组都是可以分解成斐波那契数列的但是由于分割以后的数字都大于了 `2^31 - 1`所以这些解都不能要
- 这一题也要特别注意剪枝条件没有剪枝条件时间复杂度特别高加上合理的剪枝条件以后0ms 通过
## 代码
```go
package leetcode
import (
"strconv"
"strings"
)
func splitIntoFibonacci(S string) []int {
if len(S) < 3 {
return []int{}
}
res, isComplete := []int{}, false
for firstEnd := 0; firstEnd < len(S)/2; firstEnd++ {
if S[0] == '0' && firstEnd > 0 {
break
}
first, _ := strconv.Atoi(S[:firstEnd+1])
if first >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647此处剪枝很关键
break
}
for secondEnd := firstEnd + 1; max(firstEnd, secondEnd-firstEnd) <= len(S)-secondEnd; secondEnd++ {
if S[firstEnd+1] == '0' && secondEnd-firstEnd > 1 {
break
}
second, _ := strconv.Atoi(S[firstEnd+1 : secondEnd+1])
if second >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647此处剪枝很关键
break
}
findRecursiveCheck(S, first, second, secondEnd+1, &res, &isComplete)
}
}
return res
}
//Propagate for rest of the string
func findRecursiveCheck(S string, x1 int, x2 int, left int, res *[]int, isComplete *bool) {
if x1 >= 1<<31 || x2 >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647此处剪枝很关键
return
}
if left == len(S) {
if !*isComplete {
*isComplete = true
*res = append(*res, x1)
*res = append(*res, x2)
}
return
}
if strings.HasPrefix(S[left:], strconv.Itoa(x1+x2)) && !*isComplete {
*res = append(*res, x1)
findRecursiveCheck(S, x2, x1+x2, left+len(strconv.Itoa(x1+x2)), res, isComplete)
return
}
if len(*res) > 0 && !*isComplete {
*res = (*res)[:len(*res)-1]
}
return
}
```