mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-29 23:23:42 +08:00
添加内容
This commit is contained in:
135
website/content/ChapterFour/0842.Split-Array-into-Fibonacci-Sequence.md
Executable file
135
website/content/ChapterFour/0842.Split-Array-into-Fibonacci-Sequence.md
Executable file
@ -0,0 +1,135 @@
|
||||
# [842. Split Array into Fibonacci Sequence](https://leetcode.com/problems/split-array-into-fibonacci-sequence/)
|
||||
|
||||
|
||||
## 题目
|
||||
|
||||
Given a string `S` of digits, such as `S = "123456579"`, we can split it into a *Fibonacci-like sequence* `[123, 456, 579].`
|
||||
|
||||
Formally, a Fibonacci-like sequence is a list `F` of non-negative integers such that:
|
||||
|
||||
- `0 <= F[i] <= 2^31 - 1`, (that is, each integer fits a 32-bit signed integer type);
|
||||
- `F.length >= 3`;
|
||||
- and `F[i] + F[i+1] = F[i+2]` for all `0 <= i < F.length - 2`.
|
||||
|
||||
Also, note that when splitting the string into pieces, each piece must not have extra leading zeroes, except if the piece is the number 0 itself.
|
||||
|
||||
Return any Fibonacci-like sequence split from `S`, or return `[]` if it cannot be done.
|
||||
|
||||
**Example 1**:
|
||||
|
||||
Input: "123456579"
|
||||
Output: [123,456,579]
|
||||
|
||||
**Example 2**:
|
||||
|
||||
Input: "11235813"
|
||||
Output: [1,1,2,3,5,8,13]
|
||||
|
||||
**Example 3**:
|
||||
|
||||
Input: "112358130"
|
||||
Output: []
|
||||
Explanation: The task is impossible.
|
||||
|
||||
**Example 4**:
|
||||
|
||||
Input: "0123"
|
||||
Output: []
|
||||
Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid.
|
||||
|
||||
**Example 5**:
|
||||
|
||||
Input: "1101111"
|
||||
Output: [110, 1, 111]
|
||||
Explanation: The output [11, 0, 11, 11] would also be accepted.
|
||||
|
||||
**Note**:
|
||||
|
||||
1. `1 <= S.length <= 200`
|
||||
2. `S` contains only digits.
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
给定一个数字字符串 S,比如 S = "123456579",我们可以将它分成斐波那契式的序列 [123, 456, 579]。斐波那契式序列是一个非负整数列表 F,且满足:
|
||||
|
||||
- 0 <= F[i] <= 2^31 - 1,(也就是说,每个整数都符合 32 位有符号整数类型);
|
||||
- F.length >= 3;
|
||||
- 对于所有的0 <= i < F.length - 2,都有 F[i] + F[i+1] = F[i+2] 成立。
|
||||
|
||||
另外,请注意,将字符串拆分成小块时,每个块的数字一定不要以零开头,除非这个块是数字 0 本身。返回从 S 拆分出来的所有斐波那契式的序列块,如果不能拆分则返回 []。
|
||||
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
|
||||
- 这一题是第 306 题的加强版。第 306 题要求判断字符串是否满足斐波那契数列形式。这一题要求输出按照斐波那契数列形式分割之后的数字数组。
|
||||
- 这一题思路和第 306 题基本一致,需要注意的是题目中的一个限制条件,`0 <= F[i] <= 2^31 - 1`,注意这个条件,笔者开始没注意,后面输出解就出现错误了,可以看笔者的测试文件用例的最后两组数据,这两组都是可以分解成斐波那契数列的,但是由于分割以后的数字都大于了 `2^31 - 1`,所以这些解都不能要!
|
||||
- 这一题也要特别注意剪枝条件,没有剪枝条件,时间复杂度特别高,加上合理的剪枝条件以后,0ms 通过。
|
||||
|
||||
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func splitIntoFibonacci(S string) []int {
|
||||
if len(S) < 3 {
|
||||
return []int{}
|
||||
}
|
||||
res, isComplete := []int{}, false
|
||||
for firstEnd := 0; firstEnd < len(S)/2; firstEnd++ {
|
||||
if S[0] == '0' && firstEnd > 0 {
|
||||
break
|
||||
}
|
||||
first, _ := strconv.Atoi(S[:firstEnd+1])
|
||||
if first >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647,此处剪枝很关键!
|
||||
break
|
||||
}
|
||||
for secondEnd := firstEnd + 1; max(firstEnd, secondEnd-firstEnd) <= len(S)-secondEnd; secondEnd++ {
|
||||
if S[firstEnd+1] == '0' && secondEnd-firstEnd > 1 {
|
||||
break
|
||||
}
|
||||
second, _ := strconv.Atoi(S[firstEnd+1 : secondEnd+1])
|
||||
if second >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647,此处剪枝很关键!
|
||||
break
|
||||
}
|
||||
findRecursiveCheck(S, first, second, secondEnd+1, &res, &isComplete)
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
//Propagate for rest of the string
|
||||
func findRecursiveCheck(S string, x1 int, x2 int, left int, res *[]int, isComplete *bool) {
|
||||
if x1 >= 1<<31 || x2 >= 1<<31 { // 题目要求每个数都要小于 2^31 - 1 = 2147483647,此处剪枝很关键!
|
||||
return
|
||||
}
|
||||
if left == len(S) {
|
||||
if !*isComplete {
|
||||
*isComplete = true
|
||||
*res = append(*res, x1)
|
||||
*res = append(*res, x2)
|
||||
}
|
||||
return
|
||||
}
|
||||
if strings.HasPrefix(S[left:], strconv.Itoa(x1+x2)) && !*isComplete {
|
||||
*res = append(*res, x1)
|
||||
findRecursiveCheck(S, x2, x1+x2, left+len(strconv.Itoa(x1+x2)), res, isComplete)
|
||||
return
|
||||
}
|
||||
if len(*res) > 0 && !*isComplete {
|
||||
*res = (*res)[:len(*res)-1]
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
```
|
Reference in New Issue
Block a user