mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-08-02 02:17:53 +08:00
添加内容
This commit is contained in:
139
website/content/ChapterFour/0128.Longest-Consecutive-Sequence.md
Executable file
139
website/content/ChapterFour/0128.Longest-Consecutive-Sequence.md
Executable file
@ -0,0 +1,139 @@
|
||||
# [128. Longest Consecutive Sequence](https://leetcode.com/problems/longest-consecutive-sequence/)
|
||||
|
||||
|
||||
## 题目
|
||||
|
||||
Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
|
||||
|
||||
Your algorithm should run in O(*n*) complexity.
|
||||
|
||||
**Example**:
|
||||
|
||||
Input: [100, 4, 200, 1, 3, 2]
|
||||
Output: 4
|
||||
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
|
||||
给定一个未排序的整数数组,找出最长连续序列的长度。要求算法的时间复杂度为 O(n)。
|
||||
|
||||
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
|
||||
- 给出一个数组,要求找出最长连续序列,输出这个最长的长度。要求时间复杂度为 `O(n)`。
|
||||
- 这一题可以先用暴力解决解决,代码见解法三。思路是把每个数都存在 `map` 中,先删去 `map` 中没有前一个数 `nums[i]-1` 也没有后一个数 `nums[i]+1` 的数 `nums[i]`,这种数前后都不连续。然后在 `map` 中找到前一个数 `nums[i]-1` 不存在,但是后一个数 `nums[i]+1` 存在的数,这种数是连续序列的起点,那么不断的往后搜,直到序列“断”了。最后输出最长序列的长度。
|
||||
- 这一题最优的解法是解法一,针对每一个 `map` 中不存在的数 `n`,插入进去都做 2 件事情。第一件事,先查看 `n - 1` 和 `n + 1` 是否都存在于 `map` 中,如果都存在,代表存在连续的序列,那么就更新 `left`,`right` 边界。那么 `n` 对应的这个小的子连续序列长度为 `sum = left + right + 1`。第二件事就是更新 `left` 和 `right` 左右边界对应的 `length = sum`。
|
||||
- 这一题还可以用并查集解决,见解法二。利用每个数在 `nums` 中的下标,把下标和下标进行 `union()`,具体做法是看前一个数 `nums[i]-1` 和后一个数 `nums[i]+1` 在 `map` 中是否存在,如果存在就 `union()`,最终输出整个并查集中包含最多元素的那个集合的元素总数。
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"github.com/halfrost/LeetCode-Go/template"
|
||||
)
|
||||
|
||||
// 解法一 map,时间复杂度 O(n)
|
||||
func longestConsecutive(nums []int) int {
|
||||
res, numMap := 0, map[int]int{}
|
||||
for _, num := range nums {
|
||||
if numMap[num] == 0 {
|
||||
left, right, sum := 0, 0, 0
|
||||
if numMap[num-1] > 0 {
|
||||
left = numMap[num-1]
|
||||
} else {
|
||||
left = 0
|
||||
}
|
||||
if numMap[num+1] > 0 {
|
||||
right = numMap[num+1]
|
||||
} else {
|
||||
right = 0
|
||||
}
|
||||
// sum: length of the sequence n is in
|
||||
sum = left + right + 1
|
||||
numMap[num] = sum
|
||||
// keep track of the max length
|
||||
res = max(res, sum)
|
||||
// extend the length to the boundary(s) of the sequence
|
||||
// will do nothing if n has no neighbors
|
||||
numMap[num-left] = sum
|
||||
numMap[num+right] = sum
|
||||
} else {
|
||||
continue
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// 解法二 并查集
|
||||
func longestConsecutive1(nums []int) int {
|
||||
if len(nums) == 0 {
|
||||
return 0
|
||||
}
|
||||
numMap, countMap, lcs, uf := map[int]int{}, map[int]int{}, 0, template.UnionFind{}
|
||||
uf.Init(len(nums))
|
||||
for i := 0; i < len(nums); i++ {
|
||||
countMap[i] = 1
|
||||
}
|
||||
for i := 0; i < len(nums); i++ {
|
||||
if _, ok := numMap[nums[i]]; ok {
|
||||
continue
|
||||
}
|
||||
numMap[nums[i]] = i
|
||||
if _, ok := numMap[nums[i]+1]; ok {
|
||||
uf.Union(i, numMap[nums[i]+1])
|
||||
}
|
||||
if _, ok := numMap[nums[i]-1]; ok {
|
||||
uf.Union(i, numMap[nums[i]-1])
|
||||
}
|
||||
}
|
||||
for key := range countMap {
|
||||
parent := uf.Find(key)
|
||||
if parent != key {
|
||||
countMap[parent]++
|
||||
}
|
||||
if countMap[parent] > lcs {
|
||||
lcs = countMap[parent]
|
||||
}
|
||||
}
|
||||
return lcs
|
||||
}
|
||||
|
||||
// 解法三 暴力解法,时间复杂度 O(n^2)
|
||||
func longestConsecutive2(nums []int) int {
|
||||
if len(nums) == 0 {
|
||||
return 0
|
||||
}
|
||||
numMap, length, tmp, lcs := map[int]bool{}, 0, 0, 0
|
||||
for i := 0; i < len(nums); i++ {
|
||||
numMap[nums[i]] = true
|
||||
}
|
||||
for key := range numMap {
|
||||
if !numMap[key-1] && !numMap[key+1] {
|
||||
delete(numMap, key)
|
||||
}
|
||||
}
|
||||
if len(numMap) == 0 {
|
||||
return 1
|
||||
}
|
||||
for key := range numMap {
|
||||
if !numMap[key-1] && numMap[key+1] {
|
||||
length, tmp = 1, key+1
|
||||
for numMap[tmp] {
|
||||
length++
|
||||
tmp++
|
||||
}
|
||||
lcs = max(lcs, length)
|
||||
}
|
||||
}
|
||||
return max(lcs, length)
|
||||
}
|
||||
|
||||
```
|
Reference in New Issue
Block a user