mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-08-02 02:17:53 +08:00
添加内容
This commit is contained in:
79
website/content/ChapterFour/0095.Unique-Binary-Search-Trees-II.md
Executable file
79
website/content/ChapterFour/0095.Unique-Binary-Search-Trees-II.md
Executable file
@ -0,0 +1,79 @@
|
||||
# [95. Unique Binary Search Trees II](https://leetcode.com/problems/unique-binary-search-trees-ii/)
|
||||
|
||||
|
||||
## 题目
|
||||
|
||||
Given an integer *n*, generate all structurally unique **BST's** (binary search trees) that store values 1 ... *n*.
|
||||
|
||||
**Example**:
|
||||
|
||||
Input: 3
|
||||
Output:
|
||||
[
|
||||
[1,null,3,2],
|
||||
[3,2,null,1],
|
||||
[3,1,null,null,2],
|
||||
[2,1,3],
|
||||
[1,null,2,null,3]
|
||||
]
|
||||
Explanation:
|
||||
The above output corresponds to the 5 unique BST's shown below:
|
||||
|
||||
1 3 3 2 1
|
||||
\ / / / \ \
|
||||
3 2 1 1 3 2
|
||||
/ / \ \
|
||||
2 1 2 3
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
给定一个整数 n,生成所有由 1 ... n 为节点所组成的二叉搜索树。
|
||||
|
||||
## 解题思路
|
||||
|
||||
- 输出 1~n 元素组成的 BST 所有解。这一题递归求解即可。外层循环遍历 1~n 所有结点,作为根结点,内层双层递归分别求出左子树和右子树。
|
||||
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
|
||||
package leetcode
|
||||
|
||||
/**
|
||||
* Definition for a binary tree node.
|
||||
* type TreeNode struct {
|
||||
* Val int
|
||||
* Left *TreeNode
|
||||
* Right *TreeNode
|
||||
* }
|
||||
*/
|
||||
func generateTrees(n int) []*TreeNode {
|
||||
if n == 0 {
|
||||
return []*TreeNode{}
|
||||
}
|
||||
return generateBSTree(1, n)
|
||||
}
|
||||
|
||||
func generateBSTree(start, end int) []*TreeNode {
|
||||
tree := []*TreeNode{}
|
||||
if start > end {
|
||||
tree = append(tree, nil)
|
||||
return tree
|
||||
}
|
||||
left, right := []*TreeNode{}, []*TreeNode{}
|
||||
for i := start; i <= end; i++ {
|
||||
left = generateBSTree(start, i-1)
|
||||
right = generateBSTree(i+1, end)
|
||||
for _, l := range left {
|
||||
for _, r := range right {
|
||||
root := &TreeNode{Val: i, Left: l, Right: r}
|
||||
tree = append(tree, root)
|
||||
}
|
||||
}
|
||||
}
|
||||
return tree
|
||||
}
|
||||
|
||||
```
|
Reference in New Issue
Block a user